(54.236.58.220) 您好!臺灣時間:2021/03/01 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭偉廷
研究生(外文):Wei-Ting Cheng
論文名稱:應用混合式分群之禁忌搜尋法於聯合補貨問題
論文名稱(外文):A Tabu Search Approach based on a Hybrid Grouping Strategy to the Joint Replenishment Problem
指導教授:王逸琦王逸琦引用關係
指導教授(外文):Yi-Chi Wang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:工業工程與系統管理學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:70
中文關鍵詞:啟發式演算法聯合補貨問題禁忌搜尋法直接分群
外文關鍵詞:HeuristicsJoint Replenishment ProblemTabu SearchDirect Grouping
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於成本考量而言,許多公司在進行訂購作業時,往往會對於單一供應商採取同時訂購多個料項的方式,期望能夠分擔相關的固定成本,以降低成本的支出,上述所言即為「聯合補貨問題(Joint Replenishment Problem)」;在訂購作業當中,公司在每隔一段固定週期之後,會對於供應商發出訂購單,而每一次所訂購的數量不會馬上使用完畢,必須足夠應付至下一個訂購週期的到來,因此會有存貨成本的產生,在以往聯合補貨問題的相關研究當中,其最主要是藉由料項的聯合訂購方式,以達成訂購成本以及存貨成本兩者總和的年度平均總成本最小化的目標。另一方面,聯合補貨問題可區分為「間接分群策略(Indirect Group Strategy, IGS)」和「直接分群策略 (Direct Group Strategy, DGS)」兩種不同的解決策略,而每一種策略對於聯合補貨問題的訂購週期訂定方式及成本考量亦不相同;過去的研究當中,大部分的學者皆是針對IGS策略之下的聯合補貨問題進行討論,鮮少有學者對於DGS策略之下的聯合補貨問題進行探討,因此本文研究最主要是針對於DGS策略之下的聯合補貨問題,設計一禁忌搜尋法(Tabu Search),以進行相關的求解;另一方面,本文將會結合DGS策略與IGS策略,提出「混合式分群策略(Hybrid Grouping Strategy, HGS)」以對於成本進行更適當的考量,並且將會與現有相關的研究文獻結果進行比較,以論證對於聯合補貨問題而言,本文所提出的禁忌搜尋法與HGS的結合為一有效率的求解方法。
The Joint Replenishment Problem (JRP) deals with the problem of determining a replenishment policy that minimizes that total cost of replenishing multiple products from a single supplier. The total cost considered in the JRP consists of a major ordering cost which is independent to the number of items in the order, a minor ordering cost depending on the items in the order, and the holding cost. In this study a concept of Direct Grouping Strategy (DGS) will be employed to solve the JRP. For a DGS, each type of item will be assigned with a group number. The item types with the same group number will be grouped together within the same order batch for saving some ordering cost. Such a problem can be classified as a combinatorial optimization problem. A tabu search method is developed for solving such a combinatorial optimization problem. The searching procedure of the proposed tabu search method based on DGS is equipped with adding the benefits of the Indirect Grouping Strategy (IGS) to become a Hybrid Grouping Strategy (HGS). Not like a DGS which provides the flexibility of grouping the items for an order batch, an IGS requires that the order cycle time for every item type must be a multiple of a common cycle time to further save more ordering costs. Computational comparisons between the RAND method and the HGS-based Tabu search method are carried out to evaluate the performance of the developed approach.
目錄
誌謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
第二章 文獻探討 4
2.1聯合補貨概況 4
2.2問題假設及標註說明 7
2.2.1聯合補貨問題相關標註 7
2.3間接分群策略 (Indirect grouping strategy, IGS) 8
2.3.1間接分群策略-相關演算法及環境假設探討 10
2.4直接分群策略 (Direct grouping strategy, DGS) 17
2.4.1直接分群策略-相關演算法及環境假設探討 18
2.5禁忌搜尋法 (Tabu search, TS) 19
2.5.1禁忌搜尋法機制說明 19
第三章 研究方法 25
3.1 禁忌搜尋法機制說明 25
3.2方法使用動機 30
3.3禁忌搜尋法應用於聯合補貨問題 31
3.3.1相關步驟過程說明 32
3.3.2混合式分群策略 (Hybrid grouping strategy, HGS) 38
3.4禁忌搜尋法流程圖示 40
第四章 數據結果 42
4.1料項資訊與問題說明 42
4.2禁忌搜尋法結合HGS策略之求解結果 43
4.2.1搜尋次數 43
4.2.2與RAND比較之結果 44
4.2.3與演化演算法相比之搜尋結果 46
4.2.4與演化演算法相比之搜尋效率 49
第五章 結果與討論 50
5.1研究成果討論 50
5.2未來研究方向 52
參考文獻 54
附錄1. 尋獲優於或等於RAND的料項參數組合 58
附錄2. 尋獲優於RAND的料項參數組合 63
附錄3. 尋獲與RAND相同料項參數組合 66

圖目錄
圖2-1 IGS策略之下的料項訂購週期說明 5
圖2-2 DGS策略之下的料項訂購週期說明 6
圖2-3 MJRP圖示說明 13
圖3-1 互換移步說明 26
圖3-2 插入移步說明 27
圖3-3 禁忌搜尋法概略流程 29
圖3-4 DGS策略說明 30
圖3-5 DGS策略之下最大可能分群數-以五個料項為例 31
圖3-6 初始解隨機分群狀況-以五個料項為例 32
圖3-7 運用互換移步方式於聯合補貨問題之說明-以五個料項為例 33
圖3-8 運用插入移步方式於聯合補貨問題之說明-以五個料項為例 34
圖3-9a 禁忌串列紀錄特性-對於所選取之料項而言 35
圖3-9b 禁忌串列紀錄特性-對於各群組所擁有的料項數目而言 35
圖3-9c 禁忌串列紀錄特性-對於各群組所擁有的料項種類而言 35
圖3-10 解禁準則判斷順序說明 37
圖3-11 禁忌搜尋法應用於聯合補貨問題之流程圖示 41

表目錄
表2-1 禁忌搜尋法應用範圍 20
表4-1 聯合補貨問題料項相關資訊 43
表4-2演化演算法與禁忌搜尋法搭配HGS策略對於RAND之比較 45
表4-3禁忌搜尋法(TS)與演化演算法(EA)之比較-31種料項參數組合 46
表4-4 「優於RAND的問題比較」指標之探討 47
吳泰熙和張欽智,民國86年,以禁忌搜尋法則求解推銷員旅行問題,大葉學報,第六期第一卷,87-99。
林彥志、謝沛修、葉銘峰和王逸琦,民國95年,應用蟻群演算法於聯合補貨問題,中國工業工程學會學術研討會 。
Aksoy, Y. and Erenguc, S.S., 1987, Multi-item inventory models with co-ordinated replenishments: A survey. International Journal of Operations and Production Management, 8(1), 63-73.
Armentano, V.A., and Yamashita, D.S., 2000, Tabu search for scheduling on identical parallel machines to minimize mean tardiness. Journal of Intelligent Manufacturing, 11(5), 453-460.
Brown, R.G., 1967, Decision Rules for Inventory Management. New York: Holt Rinehart and Winston, 50-55
Chakravarty, A.K., 1982, Inventory grouping for joint replenishment. Engineering Costs and Production Economics, 7, 19-24.
Cao, D. and Chen, M., 2004, Using penalty function and Tabu search to solve cells formation problems with fixed cells cost. Computers and Operations Research. 31(1), 21-37.
Goyal, S.K., 1974, Determination of optimum packaging frequency of items jointly replenished. Management Science, 21(4), 436-443.
Goyal, S.K., 1975, Analysis of joint replenishment inventory systems with resource restriction, Operations Research Quarterly. 26, 197-203.
Goyal, S.K. and Belton, A.S., 1979, On a simple method of determining order quantities joint replenishments under deterministic demand. Management Science, 25(6), 604-604.
Goyal, S.K., 1988, Determining the optimum production-packaging policy for jointly replenished items. Engineering Costs and Production Economics, 15, 339-341.
Goyal, S.K. and Deshmukh, S.G., 1993, A note on ‘The economic ordering quantity for jointly replenishing items’. International Journal of Production Research, 31(12), 2959-2961.
Glover, F., 1977, Heuristic for integer programming using surrogate constraints. Decision Sciences, 8(1), 156-166.
Glover, F., 1990, Tabu search: a tutorial, Interfaces, 20(1), 74-94.
Glover, F., 1995, Tabu search fundamentals and uses, Revised and Expanded,
Technical Report, Graduate School of Business, University of Colorado, Boulder,
CO.
Hoque, M.A., 2006, An optimal solution technique for the joint replenishment problem with storage and transport capacities and budget constraints. European Journal of Operational Research, 175(2), 1033-1042.
Kaspi, M. and Rosenblatt M.J., 1983, An improvement of Sliver`s algorithm for the joint replenishment problem. IIE Transactions, 15(3), 264-267.
Kaspi, M. and Rosenblatt M.J., 1985, The effectiveness of heuristic algorithms for multi-item inventory systems with joint replenishment costs. International Journal of Production Research, 23(1), 109-116.
Kaspi, M. and Rosenblatt M.J., 1991, On the economic ordering quantity for jointly replenished items. International Journal of Production Research, 29(1), 107-114.
Khouja, M., Michalewicz, Z., and Satoskar, J.R., 2000, A comparison between genetic algorithms and the RAND method for solving the replenishment problem. Production Planning and Control, 11(6), 556-564.
Khouja, M. and Park, S., 2003, Optimal lot sizing under continuous price decrease. Omega, 31(6), 539-545.
Lee, Y.H., Bhaskran, K., and Pinedo, M., 1997, A heuristic to minimize the total weight tardiness with sequence-dependent setups. IIE Transactions, 29(1), 45-52.
Lute, C.M, Davis, K.R, and Sun, M, 1998, Determining buffer and size in production lines using tabu search. European Journal of Operational Research, 106(2-3), 301-316.
Li, Q., 2004, Solving the multi-buyer joint replenishment problem with the RAND method. Computers and Industrial Engineering, 46(4), 755-762.
Moon, I.K. and Cha, B.B., 2006, The joint replenishment problem with resource restriction. European Journal of Operational Research, 173(1), 190-198.
Olsen, A. L., 2005, An evolutionary algorithm to solve the joint replenishment problem using direct grouping. Computers and Industrial Engineering, 48(2), 223-235.
Ponnambalam, S.G., Aravindan, P., and Rajesh, S.V., A tabu search algorithm for job shop scheduling. International Journal of Advanced Manufacturing Technology, 16(10), 765-771.
Rosenblatt, M.J., 1985, Fixed cycle, basic cycle and EOQ approaches to the multi-item single-supplier inventory system. International Journal of Production Research, 23(6), 1131-1139.
Silver, E.A., 1976, A simple method of determining order quantities in joint replenishments under deterministic demand. Management Science, 22(12), 1351-1361.
Shin, H.J. and Kim, C.O., and Kim, S.S, 2002, A tabu search algorithm for single machine scheduling with release times, due dates, and sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 19(20), 859-866.
Van Eijs, M.J.G.., Heuts R.M.T., and Kleijnen J.P.C., 1992, Analysis and comparison of two strategies for multi-item inventory systems with joint replenishment costs. European Journal of Operational Research, 59(3), 405-412.
Viswanathan, S., 1996, A new optimal algorithm for the joint replenishment problem. Journal of the Operational Research Society, 47(7), 936-944.
Viswanathan, S., 2002, On optimal algorithms for the joint replenishment problem. Journal of the Operation Research Society, 53(11), 1286-1290.
Wang, Y.C., Kuo, H.W., and Cheng, W.T., 2006, A study of solving the joint replenishment problem using the RAND method under uncertain holding cost. 4th International Conference on Supply Chain Management and Information System, Taichung, Taiwan.
Yucesan, E, Chen, C.H., Snowdon, J.L., and Charnes, J.M., 2002, Shop scheduling using tabu search and simulation. Proceeding of the 2002 Winter Simulation Conference, San Diego, California.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔