(54.236.58.220) 您好!臺灣時間:2021/03/09 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏妙妤
研究生(外文):Miao-Yu Yan
論文名稱:以電化學脈衝法沉積觸媒於燃料電池氣體擴散層之研究
論文名稱(外文):A study of pulse electrodeposition of catalysts onto the gas diffusion layers in Fuel cells
指導教授:柯澤豪柯澤豪引用關係陳慶洪陳慶洪引用關係
指導教授(外文):Tse-hao KoChin-houg Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:111
中文關鍵詞:脈衝式電化學沉積半電池測試奈米碳纖維布觸媒
外文關鍵詞:carbon nanofiber fabricscatalystpulse electrochemical depositionelectrochemical half-cell analyses
相關次數:
  • 被引用被引用:6
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用脈衝電化學沉積技術,利用脈衝電場來控制液相金屬離子與碳纖維表面間固液界面的異質成核速率,並同時抑制金屬核的成長,如此可獲得奈米尺度之微粒貴金屬觸媒。
於脈衝電化學沉積時,同步的工作電極開路電位與脈衝電化學沉積次數,可被視為金屬觸媒沉積總量的指標。除碳纖維外,本實驗中亦採用新型碳素材料,其是將奈米碳纖維直接成長於碳纖維布上,稱之為奈米碳纖維布。利用直徑僅數奈米的碳纖維表面,可更近一步的抑制觸媒成核的大小。掃描式電子顯微鏡的觀察,脈衝電化學沉積技術能成功的將觸媒尺寸減少至數奈米,由高解析穿透式電子顯微鏡也觀察到,數奈米的鈀晶格影像。根據X光的繞射分析,依脈衝沉積的累積,鈀觸媒的平均結晶尺寸分佈於13~14 nm之間,而感應耦合電漿光譜定量鈀觸媒時,總量佔奈米碳纖維布總重約0.029到0.093 w t%之間。本實驗採用燃料半電池來進行電化學分析,循環伏安測試中,可觀察氫燃料與鈀觸媒進行反應的峰值,實驗中經2400次鈀觸媒沉積之奈米碳纖維布(CNFs/CFs-Pd 2400 cyc.),其最大電流密度可達2.5 mA/cm2。而將CNFs/CFs-Pd 2400 cyc.與質導膜Nafion® 117熱壓成半電池膜極組,在電位0.1 V (vs. Ag/AgCl)時的半電池測試所得的比電流密度(mA/cm2)為10.3 mA/cm2。
This experiment is a successful debut of the pulse electrochemical deposition method for decorating ultra fine particle noble metal on carbon fabrics. These ultra fine particle noble metal, acting as catalysts in PEMFC, was heterogeneously nucleated on the interphase between solid surfaces of carbon fabrics and liquid electrolyte. By imposing the pulse potential energy, the method provides an energy barrier to limit the grain growth of clusters nuclei, while it has catalyst nucleation promoted.
A new carbonaceous material, carbon nanofiber fabrics (CNFs/CFs), carbon nanofibers directly grown upon carbon fabrics, was also used as one of catalyst supporters in the experiment. Carbon nanofibers have few nano-meters in mean diameter and the cylindrical graphite walls can reduce more critical nucleation size for catalysts. Observed by field-emission scanning electron microscopy, palladium catalysts did have nano-size morphologies on carbon nanofibers (CNFs). Palladium catalysts had clear lattice images with mean spacing of d(111) about 0.22 nm observed by HR-TEM. X-ray powder diffraction analyses showed that the average crystal size of palladium was between 13 to 14 nm, and it varied according to cyclic counts (cyc.) of deposition. Amounts of catalysts loading could be evaluated via open circuit potential of carbon fabric working electrodes versus cyclic counts of deposition, and be referred with quantity analyses via an inductively coupled plasma optima optical emission spectrometer. In the experiment, a three electrodes assembly half-cell was both used in pulse electrochemical deposition and electrochemical reaction analyses. Adsorption and desorption reactions of hydrogen with palladium catalysts were analyzed via cyclic voltammetry. After 2400 cyc. deposition, palladium coated carbon nanofiber fabrics (CNFs/CFs-Pd 2400 cyc.) had a highest current density 2.5 mA/cm2 in hydrogen adsorption/desorption reaction. When catalytic carbon nanofiber fabrics were assembled with Nafion® 117 as half-cell modules, electrochemical half-cell analyses showed that the half-cell module had 10.3 mA/cm2 in value.
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 - 1 -
1.1 燃料電池 - 2 -
1.2 碳材料在燃料電池之應用 - 5 -
1.3 實驗動機 - 7 -
第二章 理論依據與文獻回顧 - 9 -
2.1 燃料電池效能 - 9 -
2.1.1 燃料電池熱力學 - 9 -
2.1.2 燃料電池極化現象 - 11 -
2.1.3 質子交換膜燃料電池與其關鍵元件 - 14 -
2.1.4.1 質子交換膜 - 16 -
2.1.4.2 觸媒層 - 18 -
2.1.4.3 氣體擴散層 - 19 -
2.1.4.4 雙極板 - 19 -
2.2 電化學沉積 - 20 -
2.2.1 電化學沉積理論 - 20 -
2.2.2 脈衝式電化學沉積理論 - 26 -
2.2 觸媒及其效率分析 - 28 -
2.2.1 鈀之基本性質 - 28 -
2.2.2觸媒載體 - 29 -
2.2.3 鈀載於碳上之電化學分析 - 33 -
第三章 實驗 - 39 -
3.1 實驗流程 - 39 -
3.2 實驗材料 - 40 -
3.3 實驗步驟 - 40 -
3.3.1 奈米碳纖維布製備 - 40 -
3.3.2 脈衝電化學沉積 - 42 -
3.3.3 電鍍碳纖維布基材 - 45 -
3.3.3 電鍍奈米碳纖維布基材 - 45 -
3.3.4 半電池組裝 - 46 -
3.4 分析測試 - 47 -
3.4.1 冷場發射掃描式電子顯微鏡照片分析 - 47 -
3.4.2 X光繞射分析 - 47 -
3.4.3 感應耦合電漿原子發射光譜分析儀 - 48 -
3.4.4穿透式電子顯微鏡 - 48 -
3.4.5 比表面積測試 - 49 -
3.4.6 循環伏特安培法 - 49 -
3.4.7 半電池測試 - 50 -
第四章 結果與討論 - 51 -
4.1 電化學曲線分析 - 51 -
4.1.1電鍍碳纖維布基材 - 51 -
4.1.2電鍍奈米碳纖維布基材 - 54 -
4.2 掃描式電子顯微鏡 - 56 -
4.2.1碳纖維布基材 - 57 -
4.2.2 奈米碳纖維布基材 - 59 -
4.3 穿透式電子顯微鏡 - 62 -
4.4 XRD繞射分析 - 66 -
4.5 感應耦合電漿光譜分析 - 71 -
4.6 比表面積分析 - 75 -
4.7 循環伏安測試 - 78 -
4.8 半電池測試 - 85 -
第五章 結論 - 87 -
第六章 參考文獻 - 89 -
附錄 - 96 -
致謝 - 97 -
1. 黃鎮江,“燃料電池”第4章,全華出版社
2. 衣寶廉,“燃料電池-原理與應用”,五南出版社
3. A. L. Dicks, “The role of carbon in fuel cells.” Journal of Power Sources, 156, 128–141(2006)
4. 稻垣道夫,大谷杉郎,大谷朝男,“碳材料碳纖維工學” 碳纖維篇,復漢出版社
5. 賴耿楊,“碳材料化學與工學”,復漢出版社
6. 莊遠昭,逢甲大學紡織工程研究所博士論文,p.1-2 (1991)
7. Philippe Serp, Massimiliano Corrias, Philippe Kalck. “Carbon nanotubes and nanofibers in catalysis” Applied Catalysis A: General 253, 337–358 (2003)
8. S. Litster1, G. McLean. “PEM fuel cell electrodes” Journal of Power Sources, 130, 61–76 (2004)
9. F.A. Lowenheim, “Electroplating”, McGraw-Hill, Inc. (1978)
10. 熊楚強,王月,“電化學”,文京出版社 (1997)
11. M. Pourbaix. “Atlas of electrochemical equilibria, in aqueous solutions” Houston Texas: National Association of Corrosion Engineers. ,p393-398、p358-363 (1974)
12. N. V. Mandich, “Pulse and Pulse-Reverse Electroplating”, Metal Finishing, 98(1), 375-380 (2000)
13. J. C. Bailar ed.﹐ “Comprehensive Inorganic Chemistry”﹐Vol. 3﹐Pergamon﹐Oxford, 1973.
14. J. V. Zoval, R. M. Stiger, P. R. Biernacki, R. M. Penner, “Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane.” Journal of Physical Chemistry, 100, 837-844 (1996)
15. M. Miranda-Hernandez, I. Gonzalez, N. Batina, “Silver electrocrystallization onto carbon electrodes with different surface morphology: active site vs surface features.” Journal of Physical Chemistry B, 105, 4214-4223 (2001)
16. Y. Gimeno, A. Creus-Hernandez, P. Carro, S. Gonzalez, R. C. Salvarezza , A. J. Arvia, “Electrochemical formation of palladium islands on HOPG: kinetics, morphology, and growth mechanisms.” Journal of Physical Chemistry B, 106, 4232-4244 (2002)
17. F. Gao, M. S. EI-Deab, T. Okajima, T. Ohsaka, “Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction.”, Journal of The Electrochemical Society, 152(6), A1226-A1232 (2005)
18. D.S. Cameron, S.J. Cooper, J.L. Dodgron, B. Harrison, J.W. Jenkins, “Carbons as supports for precious metal catalysts.”, Catalysis Today, 7(2), 113-137 (1990)
19. K. Kinoshita (Ed), “Carbon Electrochemical and Physico-chemical Properity”, Wiley, New York, 1988.
20. G. R. P. Malpass, M. Kalaji, E.C. Venancio, A. J. Motheo, “Electrodeposition of nickel on carbon felt.”, Electrochemica Acta, 49, 4933-4938 (2004)
21. R. Fu, H. Zeng, Y. Lu, “The reduction of Pt(IV) with activated carbon fibers- an XPS study.”, Carbon, 33(5), 657-661 (1995)
22. X. Shui, C. A. Frysz, D. D. L Chung, “Electrochemical behavior of hairy carbons.”, Carbon, 35(10-11), 1439-1455 (1997)
23. Y. L. Wang, Y. Z. Wan, X. H. Dong, G. X. Cheng, H. M. Tao, T. Y. Wen, “Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver.” Carbon, 36(11), 1567-1571 (1998)
24. Z. R. Yue, W. Jiang, L. Wang, H. Toghiani, S. D. Gardner, C. U. Pittman, “Adsorption of precious metal ions onto electrochemically oxidized carbon fibers.” Carbon, 37, 1607-1618 (1999)
25. K. Otsuka, H. Ogihara, S. Takenaka, “Decomposition of methane over Ni catalysts supported on carbon fibers formed form different hydrocarbons.” Carbon, 41, 223-233 (2003)
26. K. Otsuka, Y. Abe, N. Kanai, Y. Kobayashi, S. Takenaka, E. Tanabe, “Synthesis of carbon nanotubes on ni/carbon-fiber catalysts under mild conditions.” Carbon, 42, 727-736 (2004)
27. M. Gangeri, G. Centi, A. L. Malfa, S.Perathoner, R. Vieira, C. Pham-Huu, M. J. Ledoux, “Electrocatalytic performances of nanostructured platinum-carbon materials.” Catalysis Today, 102-103,50-57 (2005)
28. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, “Electrochemical nucleation part I. General considerations.” Journal of Electroanalytical Chemistry, 138, 225-239 (1982)
29. G. Gunawardena, G. Hills, I. Montenegro, “Electrochemical nucleation part II. The electrodeposition of silver on vitreous carbon.” Journal of Electroanalytical Chemistry, 138, 241-254 (1982)
30. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, “Electrochemical nucleation part Ⅲ. The electrodeposition of mercury on vitreous carbon.” Journal of Electroanalytical Chemistry, 138, 255-271 (1982)
31. G. Gunawardena, G. Hills, I. Montenegro, “Electrochemical nucleation part IV. Electrodeposition of copper onto vitreous carbon.” Journal of Electroanalytical Chemistry, 184, 357-369 (1985)
32. G. Gunawardena, G. Hills, I. Montenegro, “Electrochemical nucleation part V. Electrodeposition of cadmium onto vitreous carbon and tin oxide electrodes.” Journal of Electroanalytical Chemistry, 184, 371-389 (1985)
33. D. Grujicic, B. Pesic, “Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions.” Electrochimica acta, 51, 2678-2690 (2006)
34. D. Bera, S. C. Kuiry, S.Seal, “Kinetics and growth mechanism of electrodeposited palladium nanocrystallites.” Journal of Physical Chemistry B, 108, 556-562 (2004)
35. G. C. Bond., “Heterogeneous catalysis : principles and applications”, 2nd ed., New York (1987)
36. S. Brunauer, L. S. Deming, W. S. Deming, and E. Teller, J. Amer., 62, (1723)
37. S. J. Gregg, K. S. W. Sing, “Adsorption, Surface Area and Porosity”, p.283-287 London New York : Academic Press (1982)
38. F. A. Lewis (Ed), “The Palladium Hydrogen System”, Academic Press, New York,1967
39. L. Birry, A. Lasia, “Effect of crystal violet on the kinetics of H sorption into Pd.” Electrochimica Acta, 51, 3356–3364 (2006)
40. J. O’M. Bockris, J. McBreen, L. Nanis, “The Hydrogen Evolution Kinetics and Hydrogen Entry into a-Iron.” Journal of The Electrochemical Society, 112, 1025-1031 (1965)
41. A. Lasia, D. Gregoire, “General Model of Electrochemical Hydrogen Absorption into Metals.” Journal of The Electrochemical Society, 142, 3393 (1995)
42. A. Bagotskaya, Zh. Fiz. Khim. 36 (1962) 2667.
43. A.N. Frumkin, in: P. Delahay ed., “Advances in Electrochemistry and Electrochemical Engineering” vol. 3, Interscience, New York, 1963, p.287.
44. G. Zheng, B.N. Popov, R.E. White, “Hydrogen-Atom Direct-Entry Mechanism into Metal Membranes.” Journal of The Electrochemical Society, 142, 154 (1995)
45. C. Lim, S. Pyun, “Impedance analysis of hydrogen absorption reaction on Pd membrane electrode in 0.1 M LiOH solution under permeable boundary conditions.” Electrochimica acta, 39, 363-373 (1994)
46. T. Mallat, E. Polyanszky, J. Petro, “Electrochemical study of palladium powder catalysts.” Journal of catalysis, 44, 345-351 (1976)
47. T. Mallat, S. Szabo, J. Petro, “Real and apparent dispersion of carbon supported palladium—cobalt catalysts.” Applied Catalysis, 53, 29-40 (1989)
48. J. P. Chevillot, J. Farey, C. Hinen, A. Rousseau, Journal of electroanalytical chemistry, 64, 39, 1975
49. P. M. Hansen, “Constitution of binary alloys” second edition ,p790
50. R. Pattabiraman, “Electrochemical Investigations on Carbon Supported Palladium Catalysts.” Applied Catalysis:General, 153, 1-20 (1997)
51. R. T. Potzschke, C. A. Gervasi, S. Vinzelberg, G. Staikov, W. J. Lorenz, “Nanoscale studies of Ag electrodeposition on HOPG(0001).” Electrochimica Acta, 40, 1469-1474 (1995)
52. N. Iwashita, C. R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, “Specification for a standard procedure of X-ray diffraction measurements on carbon materials” Carbon, 42, 701–714 (2004)
53. Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, “Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation” Materials Chemistry and Physics, 85, 396-401 (2004)
54. V. Lordi, N. Yao, J. Wei, “Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst.” Chemistry of Materials, 13, 733-737 (2001)
55. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells” Journal of Physical Chemistry B, 107, 6292-6299 (2003)
56. K.I. Han, J.S. Lee, S.O. Park, S.W. Lee, Y.W. Park, H. Kim, “Studies on the anode catalysts of carbon nanotube for DMFC.” Electrochimica Acta, 50, 791-794. (2004)
57. Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, “Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells.” Carbon, 43, 3144-3152 (2005).
58. N. Rajalakshmi, H. Ryu, M. M. Shaijumon, S. Ramaprabhu, “Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material.” Journal of Power Sources, 140, 250-257 (2005)
59. T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, “Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells.” Catalysis Today, 90, 277-281 (2004).
60. Y. Lin, X. Cui, C.H. Yen, C.M. Wai, “PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid: A Novel Electrocatalyst for Direct Methanol Fuel Cells.” Langmuir, 21, 11474-11479 (2005)
61. M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, A. Ohta, “Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer-Electrolyte Fuel Cells” Journal of the Electrochemical Society, 143(7), 2245-2252 (1996)
62. S. Koh, J. Leisch, M. F. Toney, P. Strasser. “Structure-Activity-Stability Relationships of Pt-Co Alloy Electrocatalysts in Gas-Diffusion Electrode Layers.” Journal of Physical Chemistry C, 111, 3744-3752 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李文貴、劉文健、江漢光(民 82)。強迫症神經學障礙研究之進展。國防醫學,17(4),363-367。
2. 王煇雄(民 95)。兒童強迫症與認知行為治療。健康世界,246(366),49-51。
3. 李浩銘、蔡欣記、林喬祥(民 94)。強迫症。慈濟醫學,17(2)(增刊),27-33。
4. 何志培(民 89)。如何走出強迫症的陰霾。諮商與輔導,172,15-18。
5. 林旖旎(民 91)。應用短期心理諮商模式治療強迫症及泛慮症個案。輔導季刊,38(3),53-57 。
6. 江漢光、黃政嘉、馮榕(民 81)。弱勢並受忽視的疾病強迫症和相關之神經病變。臺灣醫界,35(3),54-57。
7. 吳寧遠(民 86)。由家庭支持談老人福利 — 以高雄市為例。社會建設,96,62-79。
8. 吳博倫、蘇冠賓(民 94)。身不由主強迫症。中國醫訊,23 ,3-5。
9. 許敏桃、曾英芬(民 87)。社區精神病患主要照顧者心理衛生教育之需求。護理研究,6(4),290-303。
10. 邱啟潤、許淑敏、吳瓊滿(民 91)。主要照顧者負荷壓力與因應之國內研究文獻回顧。醫護科技學刊,4(4),273-290。
11. 袁樂民、馮煥光(民 82)。強迫症。臨床醫學,31(2),122-127。
12. 商志雍、林信男(民 91)。精神疾病藥物治療病案討論(15)--強迫症之藥物治療策略。當代醫學,29(3),194-195。
13. 孫讚福、林博彥、吳景寬(民 90)。Risperidone Augmentation of Specific Serotonin Reuptake Inhibitors in the Treatment of Refractory Obsessive-Compulsive Disorder: Report of Two Cases(理思必妥輔助血清素再吸收抑制劑對頑抗型強迫症的治療:二例報告)。長庚醫學,24(9),587-592。
14. 黃俊仁、侯淑英、顏正芳、吳秋玉、張明永(民 92)。Fluvoxamine用在強迫症患者之臨床研究報告。東港安泰醫護雜誌,9(3),101-110。
15. 陳俊欽(民 94)。我反抗,所以我得強迫症。張老師月刊,328 ,28-34。
 
系統版面圖檔 系統版面圖檔