(3.231.29.122) 您好!臺灣時間:2021/02/25 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳亮宇
研究生(外文):Liang-Yu Chen
論文名稱:奈米級非晶質氧化鎢粉體之結構與氣體感測特性研究
論文名稱(外文):Structural and Gas Sensing Properties of Nano-Sized Amorphous Tungsten Oxide Powders
指導教授:林中魁
指導教授(外文):Chung-Kwei Ling
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:二氧化氮氣體非晶質氧化鎢半導體氣體感測器
外文關鍵詞:Semiconductor gas sensorNO2 gasTungsten OxideAmorphous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用氣相凝結法製程合成氧化鎢粉體,先將純鎢塊於高溫下氧化再置入高真空(約5×106 torr)腔體裡製備出奈米級非晶質氧化鎢粉體;藉由控制不同製程參數(不同之起始熱處理溫度與通氧量)可分別製備出具WO2與WO2.9不同組成之非晶質氧化鎢或WO3結晶相粉體。合成之氧化鎢粉體分別以X光繞射分析(X-Ray Diffraction)、In-Situ加熱繞射分析(In-Situ XRD)、示差掃瞄熱分析與熱重分析聯用(Differential Scanning Calorimetry – Thermogravimetry Analysis)、穿透式電子顯微鏡(Transmission Electron Microscope)與X光吸收光譜圖(X-Ray Absorption Spectrum)等儀器進行粉體之基本性質與結構檢測。此外,我們亦將氣凝合成之氧化鎢粉體製備成氣體感測材料,探討各種不同氧化鎢粉體之氣體感測性質。
XRD與TEM實驗結果顯示本研究所生成之粉體為奈米級非晶質氧化鎢粉體,並在In-Situ XRD與SDT的檢測下得知,粉體於400℃熱處理後,轉換成WO3相下之奈米氧化鎢粉體。非晶質粉體相較於WO3結晶相粉體,具較佳之感測性質;具WO2組成之非晶質粉體於100℃下針對1 ppm之NO2氣體擁有53.62之高靈敏度,而在150℃下針對1 ppm之NO2氣體之感測,具WO2.9組成非晶質之粉體有最佳之靈敏度為15.52。具WO2組成之非晶質粉體在經十次循環吸、脫附NO2氣體後仍能保有37之靈敏度;此時此粉體針對CO也展現了優異之選擇性,於200℃下電阻呈現與NO2相反之變化趨勢。
In the present study, nano-sized amorphous tungsten oxide powders were synthesized by a gas condensation process. Pure tungsten raw materials were firsty oxidized at high temperature in furnace and then put into gas condensation high vacuum chamber to produce nano-sized amorphous tungsten oxide powders. WO2 and WO2.9, or WO3 phase were synthesized by controlling initiate heat treating temperature or final oxygen pressure. The as-prepared powders were then characterized by X-ray diffraction (XRD), in-situ XRD, differential scanning calorimetry (DSC) – thermogravimetry analysis (TGA), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). In addition, gas sensors were prepared by various types of tungsten oxide powders and its performance was investigated.
XRD ad TEM results showed that the as-prepared tungsten oxide powders were amorphous and nano-sized. Revealed by in situ XRD and thermal analysis results, the as-prepared nano-sized amorphous powders transformed into WO3 phase after heat treating at 400 oC. The gas sensors prepared by amorphous powders exhibited a better gas sensing properties than those prepared by crystalline ones. Gas sensor prepared by amorphous powders with WO2 composition exhibited a high sensitivity of 53.62 when tested under 1 ppm NO2 at 100 oC. The sensitivity was ~37.0 after repetitive ten times gas adsorption-desorption. While Gas sensor prepared by amorphous powders with WO2.9 composition showed a sensitivity of 15.52 when tested under 1 ppm NO2 at 150 oC. Meanwhile, the gas sensors prepared by amorphous powders also exhibited good gas sensing selectivity against reductive CO gas, where opposite resistance response was noticed.
中文摘要 I
Abstract II
目錄 III
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 氣體感測器 3
2.1.1 氣體感測之應用 3
2.1.2 氣體感測器之種類與原理 7
2.2 金屬氧化物氣體感測器 12
2.2.1金屬氧化物感測器之回顧 12
2.2.2 金屬氧化物感測器之原理 14
2.2.3 影響靈敏度之因素 15
2.3 氧化鎢感測器 19
2.3.1 氧化鎢之基本性質 19
2.3.2 氧化鎢氣體感測器之進程 21
2.3.3 奈米氧化鎢粉體之製備 24
2.3.4 氣相凝結原理與其控制參數 25
第三章 實驗方法與步驟 29
3.1 實驗流程 29
3.2 奈米氧化鎢粉體之製備 30
3.2.1 氣相凝結系統 30
3.2.2 氣相凝結製程參數 31
3.3 奈米氧化鎢粉體之性質分析 34
3.3.1 X光繞射分析 34
3.3.2 氧化鎢粉體熱性質分析 34
3.3.3 穿透式電子顯微鏡分析 35
3.3.4 X光吸收光譜分析 35
3.4 氣體感測性質分析 36
3.4.1 檢測最佳工作溫度 37
3.4.2 檢測不同濃度之靈敏度 37
3.4.3 循環吸放氣體測試 38
3.4.4 針對不同氣體之選擇性 38
3.5 氧化鎢氣體感測器之製備 38
3.5.1 試片之製作 38
3.5.2 氣體感測器設備 40
第四章 結果與討論 41
4.1 非晶WO3-x之結構與特性分析 41
4.1.1 XRD結晶結構分析 41
4.1.2 In-Situ XRD繞射分析 44
4.1.3 粉體熱性質分析 48
4.1.4 TEM顯微結構分析 52
4.1.5 X光吸收光譜分析 54
4.2 結晶WO3-x之特性與結構分析 59
4.2.1 XRD結晶結構分析 59
4.2.2 TEM顯微結構分析 61
4.3 氣體感測性質分析 64
4.3.1 檢測最佳工作溫度 64
4.3.2 檢測對不同濃度NO2之靈敏度 72
4.3.3 循環吸放氣體測試 85
4.3.4 選擇性之檢測 87
第五章 結論 89
參考文獻 91
1.B.Y. Wei, S.L. Ho, F.Y. Chen, and H.M. Lin, “Optimization of Process Parameters for Preparing WO3/Polyacrylonitrile Nanocomposites and the Associated Dispersion Mechanism”, Surf. Coat. Technol., 166 (2003) 1-9.
2.N. Lee, K. Eup, Y. Si, K. Do, “(Ba,Sr)TiO3 Thin Films for Ultra Large Scale Dynamic Random Access Memory. A review on the Process Integration”, Mater. Sci. Eng., B56 (1998) 178-190.
3.楊明長、曾坤億、王瓊紫,“一氧化碳感測器之原理與應用”,化工技術8 [2] (2000) 158-167。
4.杜景順、駱永建、朱立文,“氮氧化物感測器之原理與應用”,化工技術8 [2] (2000) 136-154。
5.莊睦賢、黃炳照,“氧氣感測器之應用”,化工技術8 [2] (2000) 168-173。
6.蔡嬪嬪、曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,68, (1992) 50-56。
7.黃正義、陳王琨,“空氣污染防制學”,淑馨出版社 (1997)。
8.N. Funazaki, A. Hemmi, S. Ito, Y. Asano, Y. Yano, N. Miura and N. Yamazone, “Application of semiconductor gas sensor to quality control of meat freshness in food industry”, Sens. Actuators B, 24-25 (1995) 797-800.
9.M. Tong, G. Dai, and D. Gao, “WO3 Thin Film Sensor Prepared by Sol-Gel Technique and its Low-Temperature Sensing Properties to Trimethylamine”, Mater. Chem. Phys., 69 (2001) 176-179.
10.曾明漢,“觸媒燃燒型氣體感測器”,材料與社會68 (1992) 57-61。
11.周澤川,林宗榮,“臺灣地區石化工廠中之化學感測器使用概況”,化學技術8 [2] (2002) 116-119。
12.X. Wang, N. Miura, and N. Yamazoe, “Study of WO3-Based Sensing Materials for NH3 and NO Detection”, Sens. Actuators B 66 (2000) 74-76.
13.陳一誠,“金屬氧化物半導體型氣體感測器”,材料與社會 68 (1992) 62-66。
14.K. Ihokura, and J. Watson, “The Stannic Oxide Gas Sensor : Principles and Application”, CRC Press, Boca Raton (1994) chap.2.
15.G. Sberveglieri, “Recent Developments in Semiconducting Thin-Film Gas Sensors”, Sens. Actuators B, 23 (1995) 103-109.
16.S.M. Sze, “Semiconductor Sensors”, John Wiley & Sons, New York, 1994, pp. 383-410 (chap. 8).
17.C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain Size Effects on Gas Sensitivity of Porous SnO2-Based Elements”, Sens. Actuators B, 3 (1991) 147-155.
18.Y. Shimizu and M. Egashira, “Basic Aspects and Challenges of Semiconductor Gas Sensors”, MRS. Bulletin, June (1999) 18-24.
19.G. Williams and G.S.V. Coles, “Gas-Sensing Potential of Nanocrystalline Tin Dioxied Produced by a Laser Ablation Technique”, MRS. Bulletin, June (1999) 25-29.
20.林鴻明、曾世杰,“奈米半導體材料之特殊氣體感測性質”,工業材料,157 (2000) 163-169.
21.A. Gurlo, N. Barson, M. Ivanoskaya, SU. Weimar, and W. Gopel, “In2O3 and MoO3-In2O3 Thin Film Semiconductor Sensors: Interaction with NO2 and O3”, Sens. Actuators B, 47 (1998) 92-99.
22.N. Yamazoe, and N. Miura, “Environmental Gas Sensing“, Sens. Actuators B, 20 (1994) 95-102.
23.A. Diegues, A. Romano-Rodriguez, J.R. Morante, U. Weimar, M. Schweizerr-Berberich, and W. Gopel, “Morphological Analysis of Nanocrystalline SnO2 for Gas Sensor Applications”, Sens. Actuators B, 31 (1996) 1-8.
24.N. Barsan, M.S. Berberich and W. Göpel, “Fundamental and Practical Aspects in the Design of Nanoscaled SnO2 Gas Sensors: a Status Report”, Fres. Z. Analyt. Chem. 365 (1999) 287-304
25.N. Yamazoe, “New Approaches for Improving Semiconductor Gas Sensors”, Sens. Actuators B, 5 (1991) 7-19.
26.L.E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P. Nelli, L. Sangaletti, and G. Sberveglieri, “Preparation and Micro-Structure Characterization of Nanosize Thin Film of TiO2-WO3 as a Novel Material with High Sensitivity Towards NO2”, Sensors and Actuators B, 35-36 (1996) 381-383.
27.Y. Zahao, Z.C. Feng, and Y. Liang, “Pulsed Laser Deposition of WO3-Base Film for NO2 Gas Sensor Application” Sens. Actuators B, 66 (2000) 171-173.
28.M.S. Berberich, J.G. Zheng, U. Weimar, W. Gopel, N. Baran, E. Pentia and A. Tomescu, “The Effect of Pt and Pd Surface Doping on the Response of Nanocrystalline Tin Dioxide Gas Sensors to CO”, Sens. Actuators B 31 (1996) 71-75
29.H. Geistlinger, “Electron Theory of Thin-Film Gas Sensors”, Sens. Actuators B 17 (1993) 47-60
30.R.B. Vasiliev, M.N. Rumyantseva, N.V. Yakovlev, and A.M. Gaskov, “CuO/SnO2 Thin Film Heterostructures as Chemical Sensors to H2S”, Sens. Actuators B, 50 (1998) 186-193
31.M. Penza, C. Martucci, and G. Cassano, “NOx Gas Sensing Characteristics of WO3 Thin Films Activated by Noble Metals (Pd, Pt, Au) Layers”, Sens. Actuators B, 50 (1998) 52-59.
32.P.G. Su, R.J. Wu, and F.P. Nieh, “Detection of Nitrogen Dioxide Using Mixed Tungsten Oxide-Based Thick Film Semiconductor Sensor”, Talanta, 59 (2003) 667-672.
33.P.M. Woodward and A.W. Sleight, “Ferroelectric Tungsten Trioxide”, J. Solid State Chem., 131 (1997) 9-17.
34.A. Garg, J.A. Leake, and Z.H. Barber, “Epitaxial Growth of WO3 Films on SrTiO3 and Sapphire”, J. Phys. D: Appl. Phys. 33, (2000) 1048-1053.
35.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, “Introduction to Ceramics”, 2nd Edition, Wiley-Interscience Publication, New York, 1975, pp.841-912 (chap. 17).
36.Z. Xu, J.F. Vetelino, R. Lec and D.C. Parker, “Electrical Properties of Tungsten Trioxide Films”, J. Vac. Sci. Technol., A8 (1990) 3634-3638.
37.D.J. Dwye, “Surface Chemistry of Gas Sensors H2S on WO3 films”, Sens. Actuators B, 5 (1991) 155-159.
38.N. Yamazoe and N. Miura, in G. Sberveglieri (ed.), “Gas Sensors”, Kluwer Academic Publishers, Dordrecht, Netherlands, (1992) 1-42 (chap. 1).
39.M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, “Tungsten Trioxide (WO3) Sputtered Thin Films for a NOx Gas Sensor”, Sens. Actuators B, 50 (1998) 9-18.
40.D.J. Smith, J.F. Vetelino, R.S. Falconer, and E.L. Wittman, “Stability Sensitivity and Selectivity of Tungsten Trioxide Films for Sensing Applications”, Sens. Actuators B, 13-14 (1993) 264-268.
41.M. Akiyama, Z. Zhang, J. Tamaki, N. Miura, N. Yamazoe, and T. Harada, “Tungsten Oxide-Based Semiconductor Sensor for Detection of Nitrogen Oxides in Combustion Exhaust”, Sens. Actuators B, 14 (1993) 619-620.
42.J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura and N. Yamazoe, “Grain-Size Effects in Tungsten Oxide-Based Sensor for Nitrogen Oxide”, J. Electrochem. Soc., 141 (1994) 2207-2210.
43.L.E. Depero, S. Groppelli, I.N. Sora, L. Sangaletti, G. Sberveglieri, and E. Tondello, “Structural Studies of Tungsten-Titanium Oxide Thin Films” J. Solid State Chem., 121 (1996) 379-387.
44.P. Nelli, L.E. Depero, M. Ferroni, S. Groppelli, V. Guidi, F. Ronconi L. Sangaletti, and G. Sberveglieri, “Sub-ppm NO2 Sensors Based on Nanosize Thin Film of Titanium-Tungsten Oxides”, Sens. Actuators B, 31 (1996) 89-92.
45.L. Sangaletti, L.E. Depero, G. Sberveglieri, B. Allieri, E. Bontempi, and S. Groppelli, “Growth of WO3 Crystals from W-Ti-O Thin Films”, J. Crystal Growth, 198-199 (1999) 1240-1244.
46.M. Ferroni, D. Boscarino, E. Comin, D. Gnani, V. Guidi, G. Martinelli, P. Nelli, V. Rigato, and G. Sberveglieri, “Nanosized Thin Film of Tungsten-Titanium Mixed Oxides as Gas Sensors”, Sens. Actuators B, 58 (1999) p. 289-294.
47.J. SShieh, H.M. Feng, M.H. Hon, and H.Y. Juang, “WO3 and W-Ti-O Thin Film gas Sensor Prepared by Sol-Gel Dip-Coating”, Sens. Actuators B, 86 (2002) p.75-80.
48.M. Gerlich, S. Kornely, M. Fleischer, H. Meixner, and R. Kassing, “Selectivity Enhancement of a WO3/TiO2 Gas Sensor by the Use of a Four-Point Electrode Structure”, Sens. Actuators B, 93 (2003) p.503-508.
49.M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J.J. Pireaux, and X. Correig, “Influence of the Annealing and Operating Temperatures on the Gas-Sensing Properties of Rf Sputtered WO3 Thin-Film Sensors”, Sens. Actuators B, 105 (2005) p.271-277.
50.L. Dimesso, G. Miehe, H. Fuess, and H. Hahn, “Preparation of Nanostructured Granular Ag–Co and Ag–Fe Alloys by Gas Flow Condensation Technique”, Journal of Magnetism and Magnetic Materials, 191 (1999) 162-168.
51.L. Dimesso, L. Heider, H. Hahn, “Synthesis of Nanocrystalline Mn-Oxides by Gas Condensation”, Solid State Ionics., 123 (1999) 39-46.
52.N.H. Hai, R. Lemoine and S. Remboldt, M. Strand, J.E. Shield, D. Schmitter, R.H. Kraus, J.M. Espy, and D.L. Leslie-Pelecky, “Iron and Cobalt-Based Magnetic Fluids Produced by Inert Gas Condensation”, J. Magn. Magn. Mater., 293 (2005) 75-79.
53.G.E. Fougere, J.R. Weertman, and R.W. Siegel, “Processing and Mechanical Behavior of Nanocrystalline Fe”, Nanostruct. Mater., 5 (1995) 127-134.
54.A. Djekoun, B. Bouzabata, S. Alleg, J.M. Greneche, and A. Otmani, “Synthesis and Morphological Characterization of Nanocrystalline Powders Obtained by a Gas Condensation Method”, Ann. Chim. Sci. Mat, 23 (1998) 557-562.
55.F. Ye, M.C Yang, X.K. Sun, and W.D. Wei, “The Formation of Ti-Fe Nanoparticles by Gas Condensation Method”, Nanostruct. Mater., 9 (1997) 113-116.
56.K.Y. Eun, J.K. Park, J.H. Kim, M.Y. Hur, S. Anders, and T. Stammler, “Characterization of Manganese Oxide Powder Processed by Gas Condensation Method”.
57.蔡銘修,“氣相凝結法製備奈米氧化錳粉體之製程開發與特性研究”,逢甲大學碩士論文(2003)。
58.K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, “An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure”, Jpn. J. Appl. Phys., 2 (1963) 702-713.
59.B. Yu, S.L. Ho, F.Y. Chen, and H.M. Lin, “Optimization of Process Parameters for Preparing WO3 / Polyacrylonitrile Nanocomposites and the Associated Dispersion Mechanism”, Surf. Coat. Technol., 166 (2003) 1-9.
60.蘇程裕、楊宗坤、林中魁、林文、張仲弘,“氣氛對電漿電弧氣凝合成奈米氧化鎢材料特性之影響”,材料科學學會年會,台北,2005。
61.H. Winick and S. Doniach, “Synchrotron Radiation Research”, Plenum press, New York, 1980.
62.汪建民,“材料分析”,中國材料科學學會,新竹,1998。
63.S.T. Wong, J.F. Lee, S. Cheng, and C.Y. Mou, “In-situ Study of MCM-41-Supported Iron Oxide Catalysts by XANES and EXAFS”, Applied Catalysis A: General, 198 (2000) 115-126.
64.C.H. Shen, R. Gundakaram, R.S. Liu, and H.S. Sheub, J. Chem. Soc., “Absence of Phase Transformation at Low Temperature in Co-doped LiMn2O4 Samples” Dalton Trans., (2001) 37-40.
65.T.Y. Yang, C.Y. Wu, M.H. Tsai, H.M. Lin, W.L. Tsai, and Y.K. Hwu, “Thermal Effects on the Structural Properties of Tungsten Oxide Nanoparticles”, J. Nanopart. Res., 6 (2004), 171-179.
66.T. Pauporte, Y. Soldp-Olivier, and R. Faure, “XAS Study of Amorphous WO3 Formation from a Peroxo-Tungstate Solution”, J. Electroanal. Chem., 562 (2004) 111-116.
67.T. Pauporte, Y. Soldp-Olivier, and R. Faure, “In Situ X-ray Absorption Spectroscopy Study of Lithium Insertion into Sputtered WO3 Thin Films”, J. Phys. Chem. B, 107 (2003) 8861-8867.
68.M. Valigi, D. Gazzoli, I. Pettiti, G. Mattei, S.Colonna, S.D. Rossi, and G. Ferraris, “WOx/ZrO2 Catalysts Part 1. Preparation, Bulk and Sirface Characterization”, Appl. Catal., A: General 231 (2002) 159-172.
69.J. Purans, A. Kuzmin, Ph. Parent, and C. Laffon, “X-ray Absorption Study of the Electronic Structure of Tungsten and Molybdenum Oxides on the O K-edge”, Electrochim. Acta, 46 (2001) 1973-1976.
70.S. Pitcher, J.A. Thiele, and H. Ren, “Current / Voltage Characteristics of a Semiconductor Metal Oxide Gas Sensor”, Sens. Actuators B, 93 (2003) 454-462.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔