【1】Gipson, G. S. and Camp, C. V. ,Effective use of Monte Carlo Quadrature for body force integrals occurring in integral form of elastostatics. In: Proc. 7th Int. Conf. On Boundary Elements, pp.17-26,1985.
【2】Camp, C. V. and Gipson, G. S. ,Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena (Springer–Verlag, berlin) ,1992.
【3】Nowak,A.J., The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems.In:Boundary Elements XI,Vol.2,Computational Mechanics Publications,Southampton and Springer-Verlag,Berlin and New York,1989.
【4】Nowak,A.J.and Brebbia, C. A. ,The Multiple Reciprocity Method:A New Approach for Transforming BEM Domain Integrals to the Boundary,Engineering Analysis, Vol. 6, Issue 3,pp.164-167, 1989.
【5】Lacha, J. C. ,Further development of the boundary integral technique for elastostatics,Ph. D. Thesis,Southampton University, 1975.
【6】Deb,A. and Banerjee, P. K. ,BEM for general anisotropic 2D elasticity using particular integrals, Commun. Appl. Num. Mech. 6:111-119, 1990.
【7】Rizzo,F.L.and Shippy,D.J. ,An advanced boundary integral equation method for three-dimensional thermoelasticity, International Journal for Numerical Methods in Engineering, Vol.11,pp.1753-1768,1977.
【8】Nardini, D. and Brebbia C. A., A new approach to free vibration analysis using boundary elements, In: Boundary Element Methods in Engineering,Computational Mechanics Publications, Southampton and Springer-Verlag,Berlin and New York,1982.
【9】Rahman,M. ,The axisymmetric contact problem of thermoelasticity in the presence of an internal heat source,International Journal of Engineering Science,Vol.41,Issue 15,pp.1899-1911,September, 2003.
【10】Sherief,H.H. and Magahed,F.F. ,A two-dimensional thermoelasticity problem for a half space subjected to heat sources, International Journal of Solids and Structures, Vol.36,Issue 9,pp.1369-1382,1999.
【11】Clemens, D.L. ,Thermal Stress in an Anisotropic Elastic Half-Space,SIAM J. Appl. Math.,Vol.24,No. 3, pp332-337, May, 1973.
【12】Qin,Qing-Hua ,Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion,Mechanics of Materials,Vol.31,Issue 10,pp.661-626,October,1999.
【13】Shiah,Y,C.and Tan ,C.L. ,Exact boundary integral transformation of the thermoelastic domain integral in BEM for general 2D anisotropic elasticity,Computional Mechanics, Vol.23, pp.87-96, 1999a
【14】Shiah,Y,C.and Tan ,C.L. ,Determination of interior point stresses in two-dimensional BEM thermoelastic analysis of anisotropic bodies,Int.J.Solids Struct 37,809-829,1999b.
【15】Dhaliwal, R. and Sherief, H., Generalized thermoelasticity for anisotropic media, Quarterly of Applied Mathematics 33, 1-8, 1980.
【16】Y. C. Shiah and Y. J. Lin , BEM’s Inter-Coupled Treatment of the Interfacial Thermal Stresses between Dissimilar Anisotropic Materials, Journal of AIAA, vol. 43, no. 5, pp. 1124-1132, May 2005.
【17】Banerjee, P. K. and Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead, 1981.
【18】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998.
【19】Y.C. Shiah, Y.H. Chen, W.S. Guao, Analysis for the Interlaminar Stresses of Thin Layered Composites with Thermal Loads, 2006.
【20】M. H. Aliabadi, D. Martin. “Boundary element hyper-singular formulation for elastoplastic contact problems” International Journal for Numerical Methods in Engineering. Vol. 48, pp.995-1014, 2000.
【21】Peter R. Johnston , David Elliott “Transformations for evaluating singular boundary element integrals” Journal of Computational and Applied Mathematics Vol.146, pp.231–251, 2002.
【22】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004
【23】Peter R. Johnston, David Elliott “A generalisation of Telles’ method for evaluating weakly singular boundary element integrals ” Journal of Computational and Applied Mathematics Vol.131, pp.223–241, 2001
【24】Yijun Liu, Hui Fan “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes” Engineering Analysis with Boundary Elements Vol.25, pp.77-91, 2001.
【25】Yijun Liu, Hui Fan “Analysis of thin piezoelectric solids by the boundary element method ” Comput. Methods Appl. Mech. Engrg. Vol.191, pp.2297-2315, 2002.
【26】Banerjee, P. K. and Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead, 1981.
【27】Yijun Liu, Hui Fan “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes” Engineering Analysis with Boundary Elements Vol.25, pp.77-91, 2001.
【28】Yijun Liu, Hui Fan “Analysis of thin piezoelectric solids by the boundary element method ” Comput. Methods Appl. Mech. Engrg. Vol.191, pp.2297-2315, 2002.
【29】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004
【30】Johnston, Barbara M. and Johnston Peter R., “A modified non-linear transformation method for evaluating weakly singular boundary integrals”, Applied Mathematics and Computation, Vol. 148, pp. 519-535, 2004.
【31】Shyang-ho Chi, Yen-Ling Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics 70, 1227–1243, 2003.
【32】Łukasz Figiel,Marcin Kaminski, “Mechanical and thermal fatigue delamination of curved layered composites”, Computers and Structures 81, 1865–1873, 2003.
【33】M.Y. Quek, “Analysis of residual stresses in a single fibre–matrix composite”, International Journal of Adhesion & Adhesives 24, 2004, 379–388
【34】Johnston, Barbara M. and Johnston Peter R., “A modified non-linear transformation method for evaluating weakly singular boundary integrals”, Applied Mathematics and Computation, Vol. 148, pp. 519-535, 2004.
【35】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro-to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998.
【36】Yijun Liu, Hui Fan “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes” Engineering Analysis with Boundary Elements Vol.25, pp.77-91, 2001.
【37】許榮中,陳聖學,漁港港內靜穩度之數值計算,國立中山大學海洋環境及工程學系碩士論文,2004.【38】吳維漢,劉文正,遞迴網格生成法,國立中央大學數學研究所碩士論文,2002.【39】夏育群,賴宏智,異向性材料點熱源熱應力之邊界元素法分析,逢甲大學航太與系統工程學系碩士論文,2005.【40】游錫揚,纖維複合材料,國彰出版社,中華民國81年11月初版
【41】夏育群,陳春來,邊界元素法入門介紹,高立出版社,中華民國93年12月初版, ISBN: 986-412-158-8.
【42】康淵,陳信吉,ANSYS入門《修訂二版》,全華出版社,中華民國93年3月.