跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李健志
研究生(外文):Chien-Chih Lee
論文名稱:光釋放能譜臨場監控反應性濺鍍超親水氧化鈦薄膜之特性分析
論文名稱(外文):Characterization of Reactively Sputtered Hydrophilic Titanium Oxide Thin Films Monitored In-Situ by Optical Emission Spectroscopy
指導教授:陳錦山
指導教授(外文):G. S. Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:產業研發碩士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:111
中文關鍵詞:光釋放能譜氧化鈦反應性濺鍍薄膜二氧化鈦親水性
外文關鍵詞:TiO2OESHydrophilicSputteredTitanium Oxid
相關次數:
  • 被引用被引用:2
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究在超高真空的背景下,在不同的O2/Ar流量比例(Ar固定5.85 sccm)下利用射頻反應性磁控濺擊金屬鈦(Ti)靶材以生長TiO及TiO2等氧化鈦(泛稱TiOx)薄膜,同時,利用臨場的光釋放能譜術(Optical Emission Spectroscopy; OES)監控電漿物種(即Ti流通量)的變化,以獲得薄膜沉積的金屬�o中毒轉變行為,依“Ti殘餘金屬強度”多寡釐清金屬區、過渡區及中毒區的分野,並採用事後的拉塞福背向散射能譜術(Ti、O組成分析)、掠角X光繞射術(微結構分析)及電阻率與沉積速率數據,清楚地理解每一個區域的TiOx薄膜特性。
其中,金屬區發生在中毒比例達50%,其確實可生長電阻率僅101、499 μΩ-cm的金屬性Ti及TiO1.0(計量比)薄膜;過渡區發生在中毒比例70~80%,其所生長的薄膜為計量比不足的半導體性TiO2薄膜(TiO1.5、TiO1.66);中毒區發生在中毒比例≧ 95%,其可生長計量比(TiO2.0)及稍過計量比(TiO2.2)薄膜。薄膜的沉積速率會隨著O2流量比例的上升而稍微增加,並於95%~100%的完全中毒情況劇降至1/3~1/4。這種沉積速率的變化狀況與Ti靶材的中毒程度及薄膜的莫耳體積差異有關。最後,掠角X光繞射分析顯示生長於金屬區的TiO1.0薄膜有明顯的複晶結構,而生長於過渡區的氧不足TiO2及中毒區的計量TiO2.0薄膜並沒有良好的結晶狀態,但經過高溫氧氣退火後,前者會轉變為銳鈦曠(A-TiO2)與金紅石(R-TiO2)双相共存,後者則會轉變為A-TiO2。水接觸角量測證實,此兩種薄膜均具有光誘發超親水特性,並以A-TiO2薄膜單相較佳且其親水性在無光線照射時回覆時間較長。
The research grows titanium oxide TiO and TiO2 (generally called TiOx) with ultra high vacuum reactive magnetron sputtering titanium target in different O2/Ar flow ratio, and monitors the difference of plasma type with in-situ optical emission spectroscopy (OES) to get hysteresis effect of deposited metal thin films, and then separates the division of metal zone, transition zone and poisoned zone by “the intensity of remnant titanium”. After that, use Rutherford backscattering spectroscopy (composition analysis of Ti and O), grazing x-ray diffraction (microstructure analysis) and the data of electric resistivity and deposition rate to understand the characteristic of TiOx in each zone clearly.
It is sure that metal Ti and TiO (stoichiometric) thin films with resistivity 101 and 499 μΩ-cm can be grown in 50% poisoned metal zone. The poisoned ratio of the transition zone is 70~80% and there are semi-conductive TiO2 thin films under stoichiometric (TiO1.5, TiO1.66). The poisoned ratio of the poisoned zone is over 95% and there are stoichiometric (TiO2.0) and slightly over stoichiometric thin films (TiO2.2).The thin film deposition rate will increase slightly with oxygen flow ratio rising, and sharply drop to 1/3~1/4 during complete poisoning, about 95%~100%. The change of deposition rate depends on the poisoned degree of titanium target and the difference of molar volume. Finally, grazing x-ray diffraction analysis indicates that TiO1.0 thin films grown in metal zone have apparent poly crystal structure, and oxygen insufficient TiO2 grown in transition zone and stoichiometric TiO2.0 thin film grown in poisoned zone have not great crystalline condition, but the former one will transform to coexisting anatase (A-TiO2) and rutile (R-TiO2) phases, and the latter to A-TiO2 after high temperature annealing in oxygen atmosphere. Water contact angle measurement indicates that the two type of thin films both are photo-induced ultra hydrophilic and the single phase A-TiO2 thin films are better, and their hydrophilic behavior have longer reverse time without light.
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
總目錄……………………………………………………………………V
表目錄.................................................VIII
圖目錄..................................................XII
第一章、緒論..............................................1
1.1 研究背景與動機........................................1
1.2 研究目的..............................................4
第二章、文獻回顧..........................................7
2.1 二氧化鈦薄膜特性......................................7
2.2 反應性濺鍍氧化鈦之遲滯行為............................8
2.3 反應性濺鍍氧化鈦之薄膜特性分析........................9
2.4 OES臨場監控反應性濺鍍電漿之製程......................11
2.5 二氧化鈦薄膜的觸媒與親水性...........................13
2.5.1 光催化.............................................13
2.5.2 光誘發超親水性.....................................15
第三章、實驗細節與薄膜分析...............................28
3.1 實驗流程指引.........................................28
3.2 磁控濺鍍系統.........................................30
3.3 光放射能譜術及EmiCon系統.............................31
3.4 反應性磁控濺鍍之薄膜沉積行為.........................32
3.4.1 實驗細節...........................................32
3.4.2 氧化性與真空退火製程...............................34
3.5 薄膜特性檢測與分析...................................35
3.5.1 表面輪廓儀(α-Step)...............................35
3.5.2 四點探針儀(Four-Point Probe).....................36
3.5.3 掠角X光繞射儀(GIXRD).............................37
3.5.4 拉塞福背向散射分析儀(RBS)........................39
3.5.5 親水性試驗(Contanct angle).......................42
第四章、結果與討論.......................................58
4.1 光譜特徵轉變情況.....................................58
4.2 中毒-金屬轉換曲線與氧訊號變化情況...................60
4.3 薄膜組成分析.........................................62
4.4 電阻率與沉積速率.....................................65
4.5 微結構分析...........................................67
4.5.1 剛沉積薄膜.........................................67
4.5.2 真空退火薄膜.......................................69
4.5.3 氧氣退火薄膜.......................................70
4.6 光誘發超親水性試驗...................................71
第五章、結論.............................................93
參考文獻.................................................95
1.C. Cabral, K.N. Chen, L. Krusin-Elbaum and V. Deline, Irreversible Modification of Ge2Sb2Te5 Phase Change Material by Nanometer-thin Ti Adhesion Layers in a Devie-compatible Stack, Appl. Phys. Lett., p. 90 (2007).
2.K.G. Grigorov, M. Stoyanova, I. Matrtev, G. Grigorov, L. Drajeva-Grigorov and R. Sporken, Some Properties of Thin Films of Titanium Monoxide Synthesized by Reactive Evaporation, Bulg. J. Phys., 25, p. 177 (1998).
3.K. G. Grigorov, D. Bouchier, R. Sporken and R. Caudano, Synthesis and Charaterization of Conductive Titanium Monoxide Films. Diffusion of Silicon in Titanium NonoxideFilms, Vacuum, 51, p. 153 (1998).
4.R. Levinson, P. Berdahl and H. Akbari, Solar Spectral Optical Properties of Pigments-part II: Survey of Common Colorants, Solar Energy Materials and Solar Cells, 89, p. 351 (2005).
5.S. Yoshida, Antireflection Coatings on Metals for Selective Solar Absorbers, Thin Solid Films, 56, p. 321 (1979).
6.C.A. Linkous, G.J. Carter, D.B. Locuson, A.J. Ouellette, D.K. Slattery, and L. A. Smitha, Photocatalytic Inhibition of Algae Growth Using TiO2 and WO3 and Cocatalyst Modifications, Environ. Sci. Technol., 34, p. 44754 (2000).
7.U. Bach, D. Lupo, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state Dye-sensitized Mesoporous TiO2 Solar Cell With High Photon-to-electron Conversion Efficiencies, Nature, 395, p. 583 (1998).
8.A. Fujishima, K. Honda, K. University and Yokohama, Electrochemical Photolysis of Water at a Aemiconductor Electrode, Nature, 238, p. 378 (1972).
9.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced Amphiphilic Surfaces, Nature, 388, p. 431 (1997).
10.A. Bahtat, M. Bouazaoui, M. Bahtat, C. Garapon, B. Jacquier and J. Mugnier, Up-Conversion Fluorescence Spectroscopy in Er3+: TiO2 Planar Waveguides Prepared by Sol-Gel Process, J. Non-Crystalline Solids, 202, p. 16 (1996).
11.J. Augustynski, The Role of The Surface Intermediates in The Photoelectrochemical Behavior of Anatase and Rutile TiO2, Electrochim. Acta, 38, p. 43 (1993).
12.M. Yamagishia, S. Kurikib, P. K. Songa and Y. Shigesatoa, Thin Film TiO2 Photocatalyst Deposited by Reactive Magnetron Sputtering, Thin Solid Films, 442, p. 227 (2003).
13.R.I. Bickley, T. Gonzalea-Carreno, J.S. Lees, L. Palmisano and R.J.D. Tilley, A Structural Investigation of Titanium Dioxide Photocatalysts, J. Solid State Chem., 92, p. 178 (1991).
14.C. He, Y. Yu, X. Hu and A. Larbot, Influence of Silver Doping on the Photocatalytic Activity of Titania Films, Appliated Surface Science, 200, p. 239 (2002).
15.H. Park and W. Choi, Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors of Polyoxomentalate in UV-illuminated Suspensions of TiO2 and Pt/ TiO2, J. Phys. Chem. B., 64, p. 169 (2003).
16.M. Hayakawa, E. Kojima, K. Norimoto, M. Machida, A. Kitamura, T. Watanabe, M. Chikuni, A. Fujishima and K. Hashimoto, Method for photocatalytically Rendering a Surface of a Substrate With Superhydrophilic Photocatalytic Surface and Method of Making Thereof, U. S. Patent, 6013372 (2000).
17.F. Zhang, N. Huang, P. Yang, X. Zeng, Y. Mao, Z. Zheng, Z. Zhou and X. Liu, Blood Compatibility of Titanium Oxide Prepared by Ion-Beam-Enhanced Deposition, Surf. Coat. Technol., 84, p. 476 (1996).
18.H.K. Jang, S.W. Whangbo, Y.K. Choi, Y.D. Chung, K. Jeong, C.N. Whang, Y.S. Lee, H.S. Lee, J.Y. Choi, G.H. Kim and T.K. Kim, Titanium Oxide Films on Si(100) Deposited by E-Beam Evaporation, J. Vac. Sci. Technol. A, 18, p. 2932 (2000).
19.B. Karunagaran, R.T. Kumar, D. Mangalaraj, S.K. Narayandass and G.M. Rao, Influence of Thermal Annealing on the Composition and Structural Parameters of DC Magnetron Sputtered Titanium Dioxide Thin Films, Cryst. Res. Technol., 37, p. 1285 (2002).
20.S. Schiller, G. Beister, W. Sieber, G. Schirmer and E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive D.C. Plasmatron Sputtering, Thin Solid Films, 83, p. 239 (1981).
21.G. Bräuer, M. Ruske, J. Szczyrbowski, G. Teschner and A. Zmelty, Mid Frequency Sputtering with TwinMag®-A Survey of Recent Results, Vacuum, 51, p. 655 (1998).
22.K. Okimur, Low Temperature Growth of Rutile TiO2 Films in Modified RF Magnetron Sputtering, Surf. Coat. Technol., 135, p. 286 (2001).
23.S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, Rutile-Type TiO2 Formation by Ion Beam Dynamic Mixing, J. Vac. Sci. Technol. A, 10, p. 3253 (1992).
24.N. Martin, C. Rousselot, C. Savall and F. Palmino, Characterizations of Titanium Oxide Films Prepared by Radio Frequency Magnetron Sputtering, Thin Solid Films, 287, p. 154 (1996).
25.L.M. Williams and D.W. Hess, Structure Properties of Titanium Dioxide Films Deposition in an RF Glow Discharge, J. Vac. Sci. Technol. A, p. 1810 (1983).
26.I. Hayakawa, Y. Iwamoto, K. Kikuta and S. Hirano, Gas Sensing Properties of Platinum Dispersed-TiO2 Thin Film Derived from Precursor, Sens. Actuators B, 62, p. 55 (2000).
27.H. Lin, S. Kumon, H. Kozuka and T. Yoko, Electrical Properties of Sol-Gel-Derived Transparent Titania Films Doped with Ruthenium and Tantalum, Thin Solid Films, 315, p. 266 (1998).
28.T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima and K. Hashimoto, Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass, J. Sol-Gel Sci. Technol., 19, p. 71 (2000).
29.M. Gilo and N. Croitoru, Properties of TiO2 Films Prepared by Ion-Assisted Deposition Using a Gridless End-Hall Ion Source, Thin Solid Films, 283, p. 84 (1996).
30.雪班(Fishbine, Glenn), 奈米商機, 臺北市: 臺灣培生教育, (2003).
31.K. Takamura, and Y. Abe, Influence of Oxygen Flow on The Oxidation of Ti Tagrget and The Formation Process TiO2 Film by Reactive Sputtering, Vacuum, 74, p. 397 (2004).
32.C.C. Ting, S.Y. Chen and D.M. Liu, Preferential Growth of Thin Rutile TiO2 Films Upon Thermal Oxidation of Sputtered Ti Films, Thin Solid Films, 402, p. 290 (2002).
33.簡國明, 奈米二氧化鈦專利地圖及分析, 臺北市 : 行政院國家科學委員會科學技術資料中心, (2003).
34.K. Takamura, Y. Abe and K. Sasaki, Influence of Oxygen Flow Ratio on the Oxidation of Ti Target and the Formation Process of TiO2 Films by Reactive Sputtering, Vacuum, 74, p. 397 (2004).
35.S. Maniv and W.D. Westeood, Ixidation of an Aluminum Magnetron Sputtering Target in Ar/O2 Mixtures. J. Appl. Phys., 51, p. 718 (1980).
36.M. Ohring, The Materials Science of Thin Film, Academic Press (1992).
37.W.J. Zhang, Y. Li and F.H. Wang, Properties of TiO2 Thin Films Prepared by Magnetron Sputtering, J. Mater. Sci. Technol., Vol. 18, No. 2 (2002).
38.P. Lobl, M. Huppertz and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films, 251, P. 72 (1994).
39.H.Y. Wang, T.M. Wang and P. Xu, Effects of Substrate Temperature on the Microstructure and Photocatalytic Reactivity of TiO2 Films, J. Mater. Sci. Mater. Electron., 9, P. 327 (1998).
40.G.H. Li, L. Yang, Y.X. Jin and L.D. Zhang, Structural and Optical Properties of TiO2 Thin Film and TiO2+2 wt.% ZnFe2O4 Composite Film Prepared by R.F Sputtering, Thin Solid Films, 368, p. 163 (2000).
41.U. Fantz, Basics of Plasma Spectroscopy, Plasma Sourc. Sci. Tech., 15, p. S137 (2006).
42.S. Hong, G. May, and D. Park, Neural Network Modeling of Reactive Ion Etching Using Optical Emission Spectroscopy Data, IEEE, 16, p.598 (2003).
43.A. Belkind,W. Zhu, J. Lopez and K. Becker, Time-resolved Optical Emission Spectroscopy During Pulsed dc Magnetron Sputter Deposition of Ti and TiO2 Thin Films, Plasma Sourc. Sci. Tech., 15, p. S17, 2006.
44.S. N. Frank and A. J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem., 81, p. 15 (1977).
45.垰田博史,光觸媒圖解,商周出版社,(2003)。
46.化學資訊月刊14卷第8期。
47.A. Heller, Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films, Acc. Chem. Res. 28, 503 (1995).
48.R. Cai, Y. Hashimoto, K. Itoh, Y. Kubota, A. Fujishima, Photokilling of malignant cells with ultrafine TiO2 powder. Chem. Soc. Jap. 64, p. 1268 (1991).
49.H. Kazuhito and F. Akira, TiO2 Photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys., 44, p. 8269 (2005).
50.Takata Y, Tanaka K, Kaijima K, Ito T, Watanabe T, Shimohigoshi M. 1999a Enhancement of heat transfer with liquid-vapor phase change by photo-induced hydrophilicity. Proceedings of 33rd National Heat Transfer Conference, NHTC99-080.
51.F.M. Smits, Measurement of Sheet Resistivities with the Four-Point Probe, Bell Syst. Tech. J., 37, p. 711 (1958).
52.汪建民, 材料分析, 中國材料科學學會 (2005).
53.B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction3rd, Prentice Hall, Inc., (2001).
54.Joint Committee for Powder Diffraction Standards (JCPDS), Card No. 05-0682【��-Ti】, 77-2170【TiO】, 02-0406【A-TiO2】, 02-0494【R-TiO2】.
55.R. Ruus, A. Kikas, A. Saar, A. Ausmees, E. Nommiste, J. Aarik, A. Aidla, T. Uustare and I. Martinson, Ti 2p and O 1s X-Ray Absorption of TiO2 Polymorphs, Solid State Communications, 104, p. 199 (1997).
56.林鴻明, 奈米材料之量測技術講義, 大同大學.
57.V.S. Lusvardi, M.A. Barteau, J.G. Chen, J. Eng, B. Fruhberger and A. Teplyakov, An NEXAFS Investigation of the Reduction and Reoxidation of TiO2 (001), Surf. Sci., 397, p. 237 (1998).
58.Dataphysic, “ Introduction into Methods of Measuring and Analyzing Contact Angles for the Determination of Surface Free Energies of solids, ” Interfacial Chemistry.
59.A.D. Srivastava, M.H. Gordon and D.G. Bhat, Optical Emission Spectroscopy in An Inverted Cylindrical Magnetron Plasma, Surf. Coat. Tech. 200, p. 1346 (2005).
60.M. Neuhauser, S. Barwulf and H. Hilgers, Optical Emission Spectroscopy Studies of Titanium Nitride Sputtering on Thermoplastic Polymers, Surf. Coat. Technol., 116, p. 981 (1999).
61.O. Tamiko, N. Shouta, U. Tsuyoshi, K. Hiroharu, S. Yoshiaki and E. Kenji,Laser Ablated Plasma Plume Characteristics for Photocatalyst TiO2 Thin Films Preparation, Thin Solid Films, 506, p. 106 (2006).
62.H. Mike and T. Mike, GENPLOT, Cornell University (1996).
63.G.S. Chen, W.L. Liao, S.T. Chen, W.C. Su and C.K. Lin, Effects of Deposition and Annealing Atmospheres on Phase Transition of Tungsten Oxide Films Ggrown by Ultra-high-vacuum Reactive Sputtering, Thin Solid Films, 493, p. 301 (2005).
64.D.R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, p. 4-99 (2005).
65.B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, Prentice Hall Inc., 2001 (third edition).
66.蘇偉釧,“射頻濺鍍氧化鈦薄膜之反應性沉積氣氛與退火誘發相轉變行為”,逢甲大學材料科學研究所碩士,2005。
67.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 2, pp. 135-138 (1998)
68.R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces, J. Phys. Chem. B ,103, pp. 2188-2194 (1999)…
69.M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95, p. 69 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top