|
[1]C. Notredame and D. G. Higgins, "SAGA: sequence alignment by genetic algorithm," Nucleic Acids Research, vol. 24, pp. 1515-1524, 1996. [2]C. H. Ooi and P. Tan, "Genetic algorithms applied to multi-class prediction for the analysis of gene expression data," Bioinformatics, vol. 19, pp. 37-44, 2003. [3]G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, "Development and valida-tion of a genetic algorithm for flexible docking," Journal of Molecular Biology, vol. 267, pp. 727-748, Apr 1997. [4]G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, "Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function," Journal of Computational Chemistry, vol. 19, pp. 1639-1662, Nov 1998. [5]S. A. Vinterbo, E. Y. Kim, and L. Ohno-Machado, "Small, fuzzy and interpretable gene expression based classifiers," Bioinformatics, vol. 21, pp. 1964-1970, 2005. [6]A. N. Jain, "Virtual screening in lead discovery and optimization," Current Opinion in Drug Discovery and Development, vol. 7, pp. 396-403, Jul 2004. [7]C. M. Henry, "Structure-based Drug Design," Science and Technology, vol. 79, pp. 69-74, 2001. [8]M. Levitt and C. Chothia, "Structural patterns in globular proteins," Nature, vol. 261, pp. 552-558, 1996. [9]M. Gromiha and S. Selvaraj, "Protein secondary structure prediction in different structural classes," Protein Engineering, vol. 11, pp. 249-251, 1998. [10]I. Bahar, A. R. Atilgan, R. L. Jernigan, and B. Erman, "Understanding the recognition of protein structural classes by amino acid composition," Proteins, vol. 29, pp. 172-185, 1997. [11]K. C. Chou and C. T. Zhang, "Prediction of protein structural classes," Critical Re-views in Biochemistry and Molecular Biology, vol. 30, pp. 275-349, 1995. [12]K. Kumar, S. Narayanaswamy, and S. Garg, "Solving large parameter optimization problems using a genetic algorithm with stochastic coding," in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, and P. Cuesta, Eds. New York: Wiley, 1995. [13]D. S. Goodsell and A. J. Olson, "Automated docking of substrates to proteins by si-mulated annealing," Proteins, vol. 8, pp. 195-202, 1990. [14]D. W. Miller and K. A. Dill, "Ligand binding to proteins: The binding landscape mod-el," Protein Science, vol. 6, pp. 2166-2179, Oct 1997. [15]C. Cortes and V. Vapnik, "Support-vector network," Machine Learning, vol. 20, pp. 273-297, 1995. [16]Y. D. Cai, X. J. Liu, X. B. Xu, and K. C. Chou, "Support vector machines for predic-tion of protein domain structural class," Journal of Theoretical Biology, vol. 221, pp. 115-120, 2003. [17]L. A. Kurgan and L. Homaeian, "Prediction of structural classes for protein sequences and domains-Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy," Pattern Recognition, vol. 39, pp. 2323-2343, 2006. [18]S.-Y. Ho, L.-S. Shu, and J.-H. Chen, "Intelligent evolutionary algorithms for large pa-rameter optimization problems " IEEE Transactions on Evolutionary Computation, vol. 8, pp. 522-541, 2004. [19]J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proceedings of the 1994 IEEE International Conference on Neural Networks, 1995, pp. 1942-1948. [20]L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965. [21]J. Casillas, O. Cordon, M. J. Del Jesus, and F. Herrera, "Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional prob-lems," Information Sciences, 2001. [22]L. Castillo, A. Gonzalez, and R. Perez, "Including a simplicity criterion in the selec-tion of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets and Systems, vol. 120, pp. 309-321, 2001. [23]H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective geneticsbased machine learning for linguistic rule extraction," Information Sciences, vol. 136, pp. 109-133, 2001. [24]H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by data mining criteria and ge-netic algorithms," in Proceedings of the 2002 Genetic and Evolutionary Computation Conference, New York, USA, 2002, pp. 399-406. [25]H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 516-524, 2001. [26]C. Z. Janikow, "A genetic algorithm for optimizing fuzzy decision trees," Information Sciences, vol. 89, pp. 275-296, 1996. [27]J. Yen, "Fuzzy logic-a modern perspective," IEEE Transactions on Knowledge Data Engineering, vol. 11, pp. 153-165, 1999. [28]S. Rochet, "Epistasis in genetic algorithms revisited," Information Sciences, vol. 102, pp. 133-155, Nov 1997. [29]V. Uebele, S. Abe, and M.-S. Lan, "A neural-network-based fuzzy classifier," IEEE Transactions on Systems, Man and Cybernetics, vol. 25, pp. 353-361, 1995. [30]S. Abe and M.-S. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 18-28, 1995. [31]R. Thawonmas and S. Abe, "A novel approach to feature selection based on analysis of class regions," IEEE Transactions on Systems, Man and Cybernetics-Part B, vol. 27, pp. 196-207, 1997. [32]D. P. Mandal, "Partitioning of feature space for pattern classification," Pattern Recog-nition, vol. 30, pp. 1971-1990, 1997. [33]S. Medasani, J. Kim, and R. Krishnapuram, "An overview of membership function generation techniques for pattern recognition," International Journal of Approxima-tion Reasoning, vol. 19, pp. 391-417, 1998. [34]A. Homaifar and E. McCormick, "Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 129-139, 1995. [35]K.-S. Tang, K.-F. Man, Z.-F. Liu, and S. Kwong, "Minimal fuzzy memberships and rules using hierarchical genetic algorithms," IEEE Transactions on Industrial Elec-tronics, vol. 45, pp. 162-169, 1998. [36]T. Murata, S. Kawakami, H. Nozawa, M. Gen, and H. Ishibuchi, "Three-objective genetic algorithms for designing compact fuzzy rule-based systems for pattern classi-fication problems," in Proceedings of the 2001 Genetic and Evolutionary Computa-tion Conference, San Francisco, USA, 2001, pp. 485-492. [37]H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classifica-tion systems," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 506-515, 2001. [38]T. J. A. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, "DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases," Journal of Computer-Aided Molecular Design, vol. 15, pp. 411-428, May 2001. [39]M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, "A fast flexible docking method us-ing an incremental construction algorithm," Journal of Molecular Biology, vol. 261, pp. 470-489, Aug 1996. [40]D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. B. Fogel, L. J. Fogel, and S. T. Freer, "Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming," Chemistry and Bi-ology vol. 2, pp. 317-324, 1995. [41]D. M. Lorber and B. K. Shoichet, "Flexible ligand docking using conformational en-sembles," Protein Science, vol. 7, pp. 938-950, Apr 1998. [42]J. G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I. Tsigelny, and L. F. Ten Eyck, "Protein docking using continuum electrostatics and geometric fit," Protein Engineering, vol. 14, pp. 105-113, Feb 2001. [43]M. I. Zavodszky and L. A. Kuhn, "Side-chain flexibility in protein-ligand binding: The minimal rotation hypothesis," Protein Science, vol. 14, pp. 1104-1114, Apr 2005. [44]F. Solis and R. Wets, "Minimization by random search techniques," Mathematics of Opertions Research, vol. 6, pp. 19-30, 1981. [45]H. Nakashima, K. Nishikawa, and T. Ooi, "The folding type of a protein is relevant to the amino acid composition," Journal of Biochemistry, vol. 99, pp. 153-162, 1986. [46]P. Klein and C. Delisi, "Prediction of protein structural class from the amino-acid se-quence," Biopolymers, vol. 25, pp. 1659-1672, 1986. [47]K. C. Chou and C. T. Zhang, "Predicting protein-folding types by distance functions that make allowances for amino-acid interactions," Journal of Biological Chemistry, vol. 269, pp. 22014-22020, 1994. [48]K. C. Chou and G. M. Maggiora, "Domain structural class prediction," Protein Engi-neering, vol. 11, pp. 523-538, 1998. [49]C. T. Zhang, K. C. Chou, and G. M. Maggiora, "Predicting protein structural classes from amino acid composition: application of fuzzy clustering," Protein Engineering, vol. 8, pp. 425-435, 1995. [50]I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S. H. Kim, "Recognition of a pro-tein fold in the context of the SCOP classification," Proteins, vol. 35, pp. 401-407, 1999. [51]B. A. Metfessel, P. N. Saurugger, D. P. Connelly, and S. Rich, "Cross-validation of protein structural class prediction using statistical clustering and neural networks," Protein Science, vol. 2, pp. 1171-1182, 1993. [52]Z.-X. Wang and Z. Yuan, "How good is the prediction of protein structural class by the component-coupled method?," Proteins, vol. 38, pp. 165-175, 2000. [53]L. Jin, W. Fang, and H. Tang, "Prediction of protein structural classes by a new meas-ure of information discrepancy," Computational Biology and Chemistry, vol. 27, pp. 373-380, 2003. [54]R. Luo, Z. Feng, and J. Liu, "Prediction of protein structural class by amino acid and polypeptide composition," European Journal of Biochemistry, vol. 269, pp. 4219-4225, 2002. [55]K. C. Chou and Y. D. Cai, "Prediction protein structural class by functional domain composition," Biochemical and Biophysical Research Communications, vol. 321, pp. 1007-1009, 2004. [56]X. Xiao, S. H. Shao, Z. D. Huang, and K. C. Chou, "Using pseudo amino acid com-position to predict protein structural classes: Approached with complexity measure factor," Journal of Computational Chemistry, vol. 27, pp. 478-482, 2006. [57]J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975. [58]D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addition-Wesley, 1989. [59]S. H. Park, Robust Design and Analysis for Quality Engineering. London, U.K.: Chapman & Hall, 1996. [60]Y.-W. Leung and Y. Wang, "An orthogonal genetic algorithm with quantization for global numerical optimization," IEEE Transactions on Evolutionary Computation, vol. 5, pp. 41-53, 2001. [61]S.-Y. Ho and Y.-C. Chen, "An efficient evolutionary algorithm for accurate polygonal approximation," Pattern Recognition, vol. 34, pp. 2305-2317, 2001. [62]S.-Y. Ho, C.-C. Liu, and S. Liu, "Design of an optimal nearest neighbor classifier us-ing an intelligent genetic algorithm," Pattern Recognition Letters, vol. 23, pp. 1495-1503, 2002. [63]H.-L. Huang and S.-Y. Ho, "Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm," Pattern Recognition, vol. 36, pp. 1065-1081, 2003. [64]R. C. Eberhart and Y. Shi, "Comparison between genetic algorithms and particle swarm optimization," in Proceedings of the 7th International Conference on Evolu-tionary Programming, San Diego, CA, USA, 1998, pp. 611-616. [65]Y. Shi and R. C. Eberhart, "A modified particle swarm optimizer," in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, 1998, pp. 69-73. [66]Y. Shi and R. C. Eberhart, "Parameter selection in particle swarm optimization," in Evolutionary Programming. vol. 7, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, pp. 591-600. [67]J. Kennedy, "The behavior of particles," in Evolutionary Programming, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, pp. 581-590. [68]R. C. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools. Boston: Academic Press, 1996. [69]J. Kennedy, "Small worlds and mega-minds: effects of neighborhood topology on par-ticle swarm performance," in Proceedings of the 1999 Congress on Evolutionary Computation, 1999, pp. 1931-1938. [70]M. Clerc and J. Kennedy, "The particle swarm - Explosion, stability, and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computa-tion, vol. 6, pp. 58-73, Feb 2002. [71]R. C. Eberhart and Y. Shi, "Comparing inertia weights and constriction factors in par-ticle swarm optimization," in Proceedings of the 2000 Congress on Evolutionary Computation, 2000, pp. 84-88. [72]Z. Michalewicz, D. Dasgupta, R. G. Le Riche, and M. Schoenauer, "Evolutionary al-gorithms for constrained engineering problems," Computers and Industrial Engineer-ing, vol. 30, pp. 851-870, 1996. [73]C. L. Blake and C. J. Merz, UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.html [Online], 1998. [74]M. B. Wall, The GALib Genetic Algorithm Package. http://lancet.mit.edu/ga/ [Online], 1999. [75]J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauffman, 1993. [76]D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers. Singapore: World Scientific Publishing, 1999. [77]S. Abe and R. Thawonmas, "A fuzzy classifier with ellipsoidal regions," IEEE Trans-actions on Fuzzy Systems, vol. 5, pp. 358-368, 1997. [78]R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: Wiley, 2000. [79]S.-Y. Ho, J.-H. Chen, and M.-H. Huang, "Inheritable genetic algorithm for bi-objective 0/1 combinatorial optimization problems and its applications," IEEE Transactions on Systems, Man and Cybernetics-Part B, vol. 34, pp. 609-620, 2004. [80]K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: Wiley, 2001. [81]S.-Y. Ho, C.-H. Hsieh, H.-M. Chen, and H.-L. Huang, "Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis," Biosystems, vol. 85, pp. 165-176, 2006. [82]A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, "A comprehen-sive evaluation of multicategory classification methods for microarray gene expres-sion cancer diagnosis," Bioinformatics, vol. 21, pp. 631-643, 2005. [83]S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaugh-lin, J. Y. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov, E. S. Lander, and T. R. Golub, "Prediction of central nervous system embryonal tumor outcome based on gene ex-pression," Nature, vol. 415, pp. 436-442, 2002. [84]C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. V. Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis, "Gene expression-based classification of ma-lignant gliomas correlates better with survival than histological classification," Can-cer Research, vol. 63, pp. 1602-1607, 2003. [85]M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaa-senbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster, and T. R. Golub, "Diffuse large B-cell lymphoma outcome prediction by gene expression pro-filing and supervised machine learning," Nature Medicine, vol. 8, pp. 68-74, 2002. [86]T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, "Molecular classification of cancer: class discovery and class prediction by gene ex-pression monitoring," Science, vol. 286, pp. 531-537, 1999. [87]S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J. Korsmeyer, "MLL translo-cations specify a distinct gene expression profile that distinguishes a unique leuke-mia," Nature Genetics, vol. 30, pp. 41-47, 2002. [88]A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker, and M. Meyerson, "Classifica-tion of human lung carcinomas by mRNA expression profiling reveals distinct ade-nocarcinoma subclasses," Proceedings of the National Academy of Sciences, vol. 98, pp. 13790-13795, 2001. [89]D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Renshaw, A. D''Amico, J. Richie, E. Lander, M. Loda, P. Kantoff, T. Golub, and W. Sellers, "Gene expression correlates of clinical prostate cancer behavior," Cancer Cell, vol. 1, pp. 203-209, 2002. [90]J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer, "Classification and di-agnostic prediction of cancers using gene expression profiling and artificial neural networks," Nature Medicine, vol. 7, pp. 658-659, 2001. [91]X. Y. Li, P. Tian, and M. Kong, "A novel particle swarm optimization for constrained optimization problems," in AI 2005: Advances in Artificial Intelligence. vol. 3809, 2005, pp. 1305-1310. [92]J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Particle swarm optimization algorithms with novel learning strategies," in Proceedings of the 2004 IEEE Interna-tional Conference on Systems, Man and Cybernetics, 2004, pp. 3659-3664. [93]A. S. Mohais, R. Mendes, C. Ward, and C. Posthoff, "Neighborhood re-structuring in particle swarm optimization," in AI 2005: Advances in Artificial Intelligence. vol. 3809, 2005, pp. 776-785. [94]C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 256-279, Jun 2004. [95]M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "Linkage Problem, Distribution Esti-mation, and Bayesian Networks " Evolutionary Computation, vol. 8, pp. 311-340, 2000. [96]Y. Davidor, "Epistasis variance: A viewpoint on GA-hardness " in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Francisco: Morgan Kaufmann, 1991, pp. 23-35. [97]D. E. Goldberg, K. Deb, and B. Korb, "Messy genetic algorithms revisited: studies in mixed size and scale," Complex Systems, vol. 4, pp. 415-444, 1990. [98]G. R. Harik and D. E. Goldberg, "Linkage learning through probabilistic expression," Computer Methods in Applied Mechanics and Engineering, vol. 186, pp. 295-310, 2000. [99]H. Mühlenbein and G. Paaß, "From recombination of genes to the estimation of dis-tributions I. Binary parameters.," in Parallel Problem Solving from Nature - PPSN IV, A. Eiben, T. Bäck, M. Shoenauer, and H.-P. Schwefel, Eds.: Springer-Verlag, 1996, pp. 178-187. [100]R. Thomsen, "Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids," Biosystems, vol. 72, pp. 57-73, Nov 2003. [101]E. Kellenberger, J. Rodrigo, P. Muller, and D. Rognan, "Comparative evaluation of eight docking tools for docking and virtual screening accuracy," Proteins, vol. 57, pp. 225-242, Nov 2004. [102]G. S. Wu, D. H. Robertson, C. L. Brooks, and M. Vieth, "Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD docking algorithm," Journal of Computational Chemistry, vol. 24, pp. 1549-1562, Oct 2003. [103]B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks, "Comparative study of several algorithms for flexible ligand docking," Journal of Computer-Aided Molecu-lar Design, vol. 17, pp. 755-763, Nov 2003. [104]R. X. Wang, L. H. Lai, and S. M. Wang, "Further development and validation of em-pirical scoring functions for structure-based binding affinity prediction," Journal of Computer-Aided Molecular Design, vol. 16, pp. 11-26, Jan 2002. [105]S. Theodoridis and K. Koutroumbas, Pattern Recognition. London, UK: Academic Press, 1999. [106]U. Hobohm and C. Sander, "Enlarged representative set of protein structures," Protein Science, vol. 3, pp. 552-524, 1994. [107]R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order in-formation for training SVM," Journal of Machine Learning Research, vol. 6, pp. 1889-1981, 2005. [108]H. Liu and R. Setiono, "A probabilistic approach to feature selection-a filter solution," in Proceedings of the 13th International Conference on Machine Learning, Italy, 1996, pp. 319-327. [109]R. Kohavi and G. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, pp. 273-324, 1997. [110]M. A. Hall, Correlation-based feature subset selection for machine learning, Ph.D. Thesis. Hamilton, New Zealand: Department of Computer Science, University of Waikato, 1999. [111]I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and tech-niques, 2nd ed. San Francisco: Morgan Kaufmann, 2005. [112]K. D. Kedarisetti, L. Kurgan, and S. Dick, "Classifier ensembles for protein structural class prediction with varing homology," Biochemical and Biophysical Research Communications, vol. 348, pp. 981-988, 2006.
|