跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宏銘
研究生(外文):Hung-Ming Chen
論文名稱:用於蛋白質與小分子嵌合及結構預測的演化式計算方法
論文名稱(外文):Protein-Ligand Docking and Structure Prediction Using Evolutionary Computation Approaches
指導教授:何信瑩
指導教授(外文):Shinn-Ying Ho
學位類別:博士
校院名稱:逢甲大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:90
中文關鍵詞:蛋白質與小分子彈性嵌合粒子群最佳化
外文關鍵詞:protein-ligand dockingparticle swarm optimizat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
演化式演算法是一種強力的最佳化工具,並且已經廣泛的應用在生物資訊的領域中。對於包含有大量調整參數的預測問題,預測結果的精確度將取決於所使用的演化式演算法之搜尋能力。在本論文中,我們使用數種有效率的演化式計算方法解決以下的預測問題:模糊規則分類器的設計、蛋白質與小分子彈性嵌合,以及蛋白質結構類別預測。
首先,我們將模糊規則分類器設計上的構成元素轉換成為一個複雜的最佳化問題中的參數,並使用智慧型基因演算法有效的解決該模糊分類器設計時的參數調整問題。此設計方法具有三大優點:1)智慧型基因演算法的強大的搜尋能力可以找出具有高度適應值的模糊分類器,2) 產生有高度可讀性的模糊規則,3)產生的分類器對未知樣本有很高的辨識率。在11組數值資料的交互驗證實驗中,效能比較與統計分析的結果顯示以智慧型基因演算法為基礎的設計方法,能有效率的產生精簡與精確的模糊分類器,並且介紹該模糊分類器設計方法應用在基因表現資料的預測問題的實例。
蛋白質與小分子的彈性嵌合可被描述成一個最佳化問題,目標是預測小分子相對於蛋白質的平移、朝向、與構型參數,使得該嵌合結果具有最低的能量。對於含有大量可旋轉鍵結的高度彈性化合物,會因為其極大的構型搜尋空間與參數間的強烈關聯性,使得彈性嵌合的最佳化問題變得極為困難。本論文提出一個以粒子群最佳化為基礎的最佳化演算法SODOCK,用以解決蛋白質與小分子的彈性嵌合問題。模擬結果顯示,相較於幾種先進的嵌合方法,SODOCK能得到更精確的預測結果。
最後我們提出一套用於蛋白質結構類別預測的演化式特徵選擇方法。在原有胺基酸組成特徵中增加新的物化屬性,並配合適當的分類器,可以提高預測的精確度。然而要在大量物化屬性中,挑選出有助於預測的屬性子集合是相當困難的。本論文提出的演化式特徵選擇方法可以在胺基酸組成比例特徵與AAindex物化屬性資料庫中挑選出具高品質的特徵子集合。實驗結果顯示相較於胺基酸組成比例特徵,該子集合能有效提升貝氏分類器、支持向量機,與羅吉斯迴歸三種分類器的預測精確度。三種分類器採用演化式挑選的特徵子集合的平均預測精確度,亦優於使用現有以專家經驗挑選的66維特徵。
Evolutionary algorithm (EA) is a powerful optimization tool and has been widely in bioinformatics area. For a complex prediction problem which involved of large amount of tuning parameters, the prediction accuracy is dominated by the optimization performance of the used evolutionary algorithm. In this dissertation, we use several efficient evolutionary computation approaches to solve the following prediction problems: design of fuzzy rule-based classifier, flexible protein-ligand docking, and protein structural class prediction.
Firstly, an evolutionary approach to designing accurate classifiers with a compact fuzzy-rule base using a scatter partition of feature space is proposed, in which all the elements of the fuzzy classifier design problem have been moved in parameters of a complex optimization problem. An intelligent genetic algorithm (IGA) is used to effectively solve the design problem of fuzzy classifiers with many tuning parameters. The merits of the proposed method are threefold: 1) the proposed method has high search ability to efficiently find fuzzy rule-based systems with high fitness values, 2) obtained fuzzy rules have high interpretability, and 3) obtained compact classifiers have high classification accuracy on unseen test patterns. The performance comparison and statistical analysis of experimental results using ten-fold cross validation show that the IGA-based method without heuristics is efficient in designing accurate and compact fuzzy classifiers using 11 well-known data sets with numerical attribute values. Consequently, an application of the fuzzy classifier to a prediction problem in gene expression analysis is introduced.
Flexible protein-ligand docking can be formulated as a parameter optimization problem whose objective is to find the translation, orientation, and conformation of a ligand relative to the active site of a target protein with the lowest energy. For highly flexible ligands with a lot of rotatable bonds, the optimization problem of flexible docking would be more difficult due to the extremely large conformation space. We proposed a novel optimization algorithm, Swarm Optimization for flexible DOCKing (SODOCK), based on particle swarm optimization (PSO) for solving flexible protein-ligand docking problems. The computer simulation results shown that SODOCK can obtain more accurate results, comparing with several state-of-the-art docking methods.
Finally, we propose an evolutionary feature selection approach based on inheritable intelligent genetic algorithm for the prediction of protein structural class. Adding physicochemical properties into protein features can improve the prediction accuracy of a proper classifier. However, selection of useful features from hundreds of physicochemical properties is very difficult. The proposed evolutionary feature selection method can obtain high quality feature subsets from amino acid composition and physicochemical properties AAindex. The experimental results show that the obtained feature subsets improve the prediction accuracies of naive Bayes classifier, support vector machine (SVM), and logistic regression, comparing with these classifiers using amino acid composition features alone. The average prediction accuracy of these classifiers with the obtained feature subsets are also superior to an existing 66-dimensional feature set designed by experts.
Acknowledgements i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 3
1.2 Achievements 4
1.3 Organization of this Dissertation 5
Chapter 2 Related Work 6
2.1 Fuzzy Rule-Based Classifiers 6
2.1.1 Fuzzy Partitions 6
2.1.2 Generation of Compact Fuzzy Rule Base 7
2.1.3 Approaches to Improving Classification Accuracy 8
2.2 Flexible Protein Ligand Docking 8
2.3 Protein Structural Class Prediction 9
Chapter 3 Overview of Optimization Algorithms 11
3.1 Genetic Algorithm 11
3.2 Orthogonal Experimental Design 12
3.3 Intelligent Genetic Algorithm 13
3.3.1 Intelligent Crossover 13
3.3.2 Procedure of IGA[18] 15
3.4 Particle Swarm Optimization 15
Chapter 4 Design of Fuzzy Rule-Based Classifier 19
4.1 Membership Function and Fuzzy Partition 19
4.2 Fuzzy Rule and Fuzzy Reasoning Method 20
4.3 Fitness Function and Chromosome Representation 22
4.4 Experimental Results 24
4.4.1 Sensitivity Analysis 24
4.4.2 Performance Comparisons 28
4.5 An Application to Microarray Data Analysis [81] 38
4.6 Summary 42
Chapter 5 Swarm Optimization for Flexible Protein-Ligand Docking 43
5.1 Problem Definition 43
5.1.1 Representation 43
5.1.2 Scoring Function 44
5.2 Hybrid Search of SODOCK 44
5.2.1 Local Search 44
5.2.2 Procedural of SODOCK 46
5.3 Analysis 47
5.3.1 Interactions among Encoded Parameters 47
5.3.2 Crossover of GA 48
5.3.3 Move Mechanism of PSO 49
5.4 Simulation Results 49
5.4.1 Data Preparation 49
5.4.2 Part 1�{Evaluation of Search Ability 50
5.4.3 Part 2�{Docking Accuracy 55
5.5 Summary 57
Chapter 6 Protein Structural Class Prediction 59
6.1 Protein Sequences Representation 59
6.1.1 Amino Acid Composition 59
6.1.2 AAindex 60
6.2 Evolutionary Feature Selection 61
6.2.1 Representation and Fitness Function 61
6.2.2 Inheritable Intelligent Genetic Algorithm 62
6.3 Experimental Results 65
6.4 Summary 70
Chapter 7 Conclusions and Future Work 71
7.1 Conclusions 71
7.2 Future Work 72
7.2.1 Flexible Protein-Ligand Docking. 72
7.2.2 Protein Structural Class Prediction 72
Reference 74
[1]C. Notredame and D. G. Higgins, "SAGA: sequence alignment by genetic algorithm," Nucleic Acids Research, vol. 24, pp. 1515-1524, 1996.
[2]C. H. Ooi and P. Tan, "Genetic algorithms applied to multi-class prediction for the analysis of gene expression data," Bioinformatics, vol. 19, pp. 37-44, 2003.
[3]G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, "Development and valida-tion of a genetic algorithm for flexible docking," Journal of Molecular Biology, vol. 267, pp. 727-748, Apr 1997.
[4]G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, "Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function," Journal of Computational Chemistry, vol. 19, pp. 1639-1662, Nov 1998.
[5]S. A. Vinterbo, E. Y. Kim, and L. Ohno-Machado, "Small, fuzzy and interpretable gene expression based classifiers," Bioinformatics, vol. 21, pp. 1964-1970, 2005.
[6]A. N. Jain, "Virtual screening in lead discovery and optimization," Current Opinion in Drug Discovery and Development, vol. 7, pp. 396-403, Jul 2004.
[7]C. M. Henry, "Structure-based Drug Design," Science and Technology, vol. 79, pp. 69-74, 2001.
[8]M. Levitt and C. Chothia, "Structural patterns in globular proteins," Nature, vol. 261, pp. 552-558, 1996.
[9]M. Gromiha and S. Selvaraj, "Protein secondary structure prediction in different structural classes," Protein Engineering, vol. 11, pp. 249-251, 1998.
[10]I. Bahar, A. R. Atilgan, R. L. Jernigan, and B. Erman, "Understanding the recognition of protein structural classes by amino acid composition," Proteins, vol. 29, pp. 172-185, 1997.
[11]K. C. Chou and C. T. Zhang, "Prediction of protein structural classes," Critical Re-views in Biochemistry and Molecular Biology, vol. 30, pp. 275-349, 1995.
[12]K. Kumar, S. Narayanaswamy, and S. Garg, "Solving large parameter optimization problems using a genetic algorithm with stochastic coding," in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, and P. Cuesta, Eds. New York: Wiley, 1995.
[13]D. S. Goodsell and A. J. Olson, "Automated docking of substrates to proteins by si-mulated annealing," Proteins, vol. 8, pp. 195-202, 1990.
[14]D. W. Miller and K. A. Dill, "Ligand binding to proteins: The binding landscape mod-el," Protein Science, vol. 6, pp. 2166-2179, Oct 1997.
[15]C. Cortes and V. Vapnik, "Support-vector network," Machine Learning, vol. 20, pp. 273-297, 1995.
[16]Y. D. Cai, X. J. Liu, X. B. Xu, and K. C. Chou, "Support vector machines for predic-tion of protein domain structural class," Journal of Theoretical Biology, vol. 221, pp. 115-120, 2003.
[17]L. A. Kurgan and L. Homaeian, "Prediction of structural classes for protein sequences and domains-Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy," Pattern Recognition, vol. 39, pp. 2323-2343, 2006.
[18]S.-Y. Ho, L.-S. Shu, and J.-H. Chen, "Intelligent evolutionary algorithms for large pa-rameter optimization problems " IEEE Transactions on Evolutionary Computation, vol. 8, pp. 522-541, 2004.
[19]J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proceedings of the 1994 IEEE International Conference on Neural Networks, 1995, pp. 1942-1948.
[20]L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.
[21]J. Casillas, O. Cordon, M. J. Del Jesus, and F. Herrera, "Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional prob-lems," Information Sciences, 2001.
[22]L. Castillo, A. Gonzalez, and R. Perez, "Including a simplicity criterion in the selec-tion of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets and Systems, vol. 120, pp. 309-321, 2001.
[23]H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective geneticsbased machine learning for linguistic rule extraction," Information Sciences, vol. 136, pp. 109-133, 2001.
[24]H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by data mining criteria and ge-netic algorithms," in Proceedings of the 2002 Genetic and Evolutionary Computation Conference, New York, USA, 2002, pp. 399-406.
[25]H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 516-524, 2001.
[26]C. Z. Janikow, "A genetic algorithm for optimizing fuzzy decision trees," Information Sciences, vol. 89, pp. 275-296, 1996.
[27]J. Yen, "Fuzzy logic-a modern perspective," IEEE Transactions on Knowledge Data Engineering, vol. 11, pp. 153-165, 1999.
[28]S. Rochet, "Epistasis in genetic algorithms revisited," Information Sciences, vol. 102, pp. 133-155, Nov 1997.
[29]V. Uebele, S. Abe, and M.-S. Lan, "A neural-network-based fuzzy classifier," IEEE Transactions on Systems, Man and Cybernetics, vol. 25, pp. 353-361, 1995.
[30]S. Abe and M.-S. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 18-28, 1995.
[31]R. Thawonmas and S. Abe, "A novel approach to feature selection based on analysis of class regions," IEEE Transactions on Systems, Man and Cybernetics-Part B, vol. 27, pp. 196-207, 1997.
[32]D. P. Mandal, "Partitioning of feature space for pattern classification," Pattern Recog-nition, vol. 30, pp. 1971-1990, 1997.
[33]S. Medasani, J. Kim, and R. Krishnapuram, "An overview of membership function generation techniques for pattern recognition," International Journal of Approxima-tion Reasoning, vol. 19, pp. 391-417, 1998.
[34]A. Homaifar and E. McCormick, "Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 129-139, 1995.
[35]K.-S. Tang, K.-F. Man, Z.-F. Liu, and S. Kwong, "Minimal fuzzy memberships and rules using hierarchical genetic algorithms," IEEE Transactions on Industrial Elec-tronics, vol. 45, pp. 162-169, 1998.
[36]T. Murata, S. Kawakami, H. Nozawa, M. Gen, and H. Ishibuchi, "Three-objective genetic algorithms for designing compact fuzzy rule-based systems for pattern classi-fication problems," in Proceedings of the 2001 Genetic and Evolutionary Computa-tion Conference, San Francisco, USA, 2001, pp. 485-492.
[37]H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classifica-tion systems," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 506-515, 2001.
[38]T. J. A. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, "DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases," Journal of Computer-Aided Molecular Design, vol. 15, pp. 411-428, May 2001.
[39]M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, "A fast flexible docking method us-ing an incremental construction algorithm," Journal of Molecular Biology, vol. 261, pp. 470-489, Aug 1996.
[40]D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. B. Fogel, L. J. Fogel, and S. T. Freer, "Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming," Chemistry and Bi-ology vol. 2, pp. 317-324, 1995.
[41]D. M. Lorber and B. K. Shoichet, "Flexible ligand docking using conformational en-sembles," Protein Science, vol. 7, pp. 938-950, Apr 1998.
[42]J. G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I. Tsigelny, and L. F. Ten Eyck, "Protein docking using continuum electrostatics and geometric fit," Protein Engineering, vol. 14, pp. 105-113, Feb 2001.
[43]M. I. Zavodszky and L. A. Kuhn, "Side-chain flexibility in protein-ligand binding: The minimal rotation hypothesis," Protein Science, vol. 14, pp. 1104-1114, Apr 2005.
[44]F. Solis and R. Wets, "Minimization by random search techniques," Mathematics of Opertions Research, vol. 6, pp. 19-30, 1981.
[45]H. Nakashima, K. Nishikawa, and T. Ooi, "The folding type of a protein is relevant to the amino acid composition," Journal of Biochemistry, vol. 99, pp. 153-162, 1986.
[46]P. Klein and C. Delisi, "Prediction of protein structural class from the amino-acid se-quence," Biopolymers, vol. 25, pp. 1659-1672, 1986.
[47]K. C. Chou and C. T. Zhang, "Predicting protein-folding types by distance functions that make allowances for amino-acid interactions," Journal of Biological Chemistry, vol. 269, pp. 22014-22020, 1994.
[48]K. C. Chou and G. M. Maggiora, "Domain structural class prediction," Protein Engi-neering, vol. 11, pp. 523-538, 1998.
[49]C. T. Zhang, K. C. Chou, and G. M. Maggiora, "Predicting protein structural classes from amino acid composition: application of fuzzy clustering," Protein Engineering, vol. 8, pp. 425-435, 1995.
[50]I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S. H. Kim, "Recognition of a pro-tein fold in the context of the SCOP classification," Proteins, vol. 35, pp. 401-407, 1999.
[51]B. A. Metfessel, P. N. Saurugger, D. P. Connelly, and S. Rich, "Cross-validation of protein structural class prediction using statistical clustering and neural networks," Protein Science, vol. 2, pp. 1171-1182, 1993.
[52]Z.-X. Wang and Z. Yuan, "How good is the prediction of protein structural class by the component-coupled method?," Proteins, vol. 38, pp. 165-175, 2000.
[53]L. Jin, W. Fang, and H. Tang, "Prediction of protein structural classes by a new meas-ure of information discrepancy," Computational Biology and Chemistry, vol. 27, pp. 373-380, 2003.
[54]R. Luo, Z. Feng, and J. Liu, "Prediction of protein structural class by amino acid and polypeptide composition," European Journal of Biochemistry, vol. 269, pp. 4219-4225, 2002.
[55]K. C. Chou and Y. D. Cai, "Prediction protein structural class by functional domain composition," Biochemical and Biophysical Research Communications, vol. 321, pp. 1007-1009, 2004.
[56]X. Xiao, S. H. Shao, Z. D. Huang, and K. C. Chou, "Using pseudo amino acid com-position to predict protein structural classes: Approached with complexity measure factor," Journal of Computational Chemistry, vol. 27, pp. 478-482, 2006.
[57]J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.
[58]D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addition-Wesley, 1989.
[59]S. H. Park, Robust Design and Analysis for Quality Engineering. London, U.K.: Chapman & Hall, 1996.
[60]Y.-W. Leung and Y. Wang, "An orthogonal genetic algorithm with quantization for global numerical optimization," IEEE Transactions on Evolutionary Computation, vol. 5, pp. 41-53, 2001.
[61]S.-Y. Ho and Y.-C. Chen, "An efficient evolutionary algorithm for accurate polygonal approximation," Pattern Recognition, vol. 34, pp. 2305-2317, 2001.
[62]S.-Y. Ho, C.-C. Liu, and S. Liu, "Design of an optimal nearest neighbor classifier us-ing an intelligent genetic algorithm," Pattern Recognition Letters, vol. 23, pp. 1495-1503, 2002.
[63]H.-L. Huang and S.-Y. Ho, "Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm," Pattern Recognition, vol. 36, pp. 1065-1081, 2003.
[64]R. C. Eberhart and Y. Shi, "Comparison between genetic algorithms and particle swarm optimization," in Proceedings of the 7th International Conference on Evolu-tionary Programming, San Diego, CA, USA, 1998, pp. 611-616.
[65]Y. Shi and R. C. Eberhart, "A modified particle swarm optimizer," in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, 1998, pp. 69-73.
[66]Y. Shi and R. C. Eberhart, "Parameter selection in particle swarm optimization," in Evolutionary Programming. vol. 7, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, pp. 591-600.
[67]J. Kennedy, "The behavior of particles," in Evolutionary Programming, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, pp. 581-590.
[68]R. C. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools. Boston: Academic Press, 1996.
[69]J. Kennedy, "Small worlds and mega-minds: effects of neighborhood topology on par-ticle swarm performance," in Proceedings of the 1999 Congress on Evolutionary Computation, 1999, pp. 1931-1938.
[70]M. Clerc and J. Kennedy, "The particle swarm - Explosion, stability, and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computa-tion, vol. 6, pp. 58-73, Feb 2002.
[71]R. C. Eberhart and Y. Shi, "Comparing inertia weights and constriction factors in par-ticle swarm optimization," in Proceedings of the 2000 Congress on Evolutionary Computation, 2000, pp. 84-88.
[72]Z. Michalewicz, D. Dasgupta, R. G. Le Riche, and M. Schoenauer, "Evolutionary al-gorithms for constrained engineering problems," Computers and Industrial Engineer-ing, vol. 30, pp. 851-870, 1996.
[73]C. L. Blake and C. J. Merz, UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.html [Online], 1998.
[74]M. B. Wall, The GALib Genetic Algorithm Package. http://lancet.mit.edu/ga/ [Online], 1999.
[75]J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauffman, 1993.
[76]D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers. Singapore: World Scientific Publishing, 1999.
[77]S. Abe and R. Thawonmas, "A fuzzy classifier with ellipsoidal regions," IEEE Trans-actions on Fuzzy Systems, vol. 5, pp. 358-368, 1997.
[78]R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: Wiley, 2000.
[79]S.-Y. Ho, J.-H. Chen, and M.-H. Huang, "Inheritable genetic algorithm for bi-objective 0/1 combinatorial optimization problems and its applications," IEEE Transactions on Systems, Man and Cybernetics-Part B, vol. 34, pp. 609-620, 2004.
[80]K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: Wiley, 2001.
[81]S.-Y. Ho, C.-H. Hsieh, H.-M. Chen, and H.-L. Huang, "Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis," Biosystems, vol. 85, pp. 165-176, 2006.
[82]A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, "A comprehen-sive evaluation of multicategory classification methods for microarray gene expres-sion cancer diagnosis," Bioinformatics, vol. 21, pp. 631-643, 2005.
[83]S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaugh-lin, J. Y. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov, E. S. Lander, and T. R. Golub, "Prediction of central nervous system embryonal tumor outcome based on gene ex-pression," Nature, vol. 415, pp. 436-442, 2002.
[84]C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. V. Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis, "Gene expression-based classification of ma-lignant gliomas correlates better with survival than histological classification," Can-cer Research, vol. 63, pp. 1602-1607, 2003.
[85]M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaa-senbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster, and T. R. Golub, "Diffuse large B-cell lymphoma outcome prediction by gene expression pro-filing and supervised machine learning," Nature Medicine, vol. 8, pp. 68-74, 2002.
[86]T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, "Molecular classification of cancer: class discovery and class prediction by gene ex-pression monitoring," Science, vol. 286, pp. 531-537, 1999.
[87]S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J. Korsmeyer, "MLL translo-cations specify a distinct gene expression profile that distinguishes a unique leuke-mia," Nature Genetics, vol. 30, pp. 41-47, 2002.
[88]A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker, and M. Meyerson, "Classifica-tion of human lung carcinomas by mRNA expression profiling reveals distinct ade-nocarcinoma subclasses," Proceedings of the National Academy of Sciences, vol. 98, pp. 13790-13795, 2001.
[89]D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Renshaw, A. D''Amico, J. Richie, E. Lander, M. Loda, P. Kantoff, T. Golub, and W. Sellers, "Gene expression correlates of clinical prostate cancer behavior," Cancer Cell, vol. 1, pp. 203-209, 2002.
[90]J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer, "Classification and di-agnostic prediction of cancers using gene expression profiling and artificial neural networks," Nature Medicine, vol. 7, pp. 658-659, 2001.
[91]X. Y. Li, P. Tian, and M. Kong, "A novel particle swarm optimization for constrained optimization problems," in AI 2005: Advances in Artificial Intelligence. vol. 3809, 2005, pp. 1305-1310.
[92]J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Particle swarm optimization algorithms with novel learning strategies," in Proceedings of the 2004 IEEE Interna-tional Conference on Systems, Man and Cybernetics, 2004, pp. 3659-3664.
[93]A. S. Mohais, R. Mendes, C. Ward, and C. Posthoff, "Neighborhood re-structuring in particle swarm optimization," in AI 2005: Advances in Artificial Intelligence. vol. 3809, 2005, pp. 776-785.
[94]C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 256-279, Jun 2004.
[95]M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "Linkage Problem, Distribution Esti-mation, and Bayesian Networks " Evolutionary Computation, vol. 8, pp. 311-340, 2000.
[96]Y. Davidor, "Epistasis variance: A viewpoint on GA-hardness " in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Francisco: Morgan Kaufmann, 1991, pp. 23-35.
[97]D. E. Goldberg, K. Deb, and B. Korb, "Messy genetic algorithms revisited: studies in mixed size and scale," Complex Systems, vol. 4, pp. 415-444, 1990.
[98]G. R. Harik and D. E. Goldberg, "Linkage learning through probabilistic expression," Computer Methods in Applied Mechanics and Engineering, vol. 186, pp. 295-310, 2000.
[99]H. Mühlenbein and G. Paaß, "From recombination of genes to the estimation of dis-tributions I. Binary parameters.," in Parallel Problem Solving from Nature - PPSN IV, A. Eiben, T. Bäck, M. Shoenauer, and H.-P. Schwefel, Eds.: Springer-Verlag, 1996, pp. 178-187.
[100]R. Thomsen, "Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids," Biosystems, vol. 72, pp. 57-73, Nov 2003.
[101]E. Kellenberger, J. Rodrigo, P. Muller, and D. Rognan, "Comparative evaluation of eight docking tools for docking and virtual screening accuracy," Proteins, vol. 57, pp. 225-242, Nov 2004.
[102]G. S. Wu, D. H. Robertson, C. L. Brooks, and M. Vieth, "Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD docking algorithm," Journal of Computational Chemistry, vol. 24, pp. 1549-1562, Oct 2003.
[103]B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks, "Comparative study of several algorithms for flexible ligand docking," Journal of Computer-Aided Molecu-lar Design, vol. 17, pp. 755-763, Nov 2003.
[104]R. X. Wang, L. H. Lai, and S. M. Wang, "Further development and validation of em-pirical scoring functions for structure-based binding affinity prediction," Journal of Computer-Aided Molecular Design, vol. 16, pp. 11-26, Jan 2002.
[105]S. Theodoridis and K. Koutroumbas, Pattern Recognition. London, UK: Academic Press, 1999.
[106]U. Hobohm and C. Sander, "Enlarged representative set of protein structures," Protein Science, vol. 3, pp. 552-524, 1994.
[107]R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order in-formation for training SVM," Journal of Machine Learning Research, vol. 6, pp. 1889-1981, 2005.
[108]H. Liu and R. Setiono, "A probabilistic approach to feature selection-a filter solution," in Proceedings of the 13th International Conference on Machine Learning, Italy, 1996, pp. 319-327.
[109]R. Kohavi and G. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, pp. 273-324, 1997.
[110]M. A. Hall, Correlation-based feature subset selection for machine learning, Ph.D. Thesis. Hamilton, New Zealand: Department of Computer Science, University of Waikato, 1999.
[111]I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and tech-niques, 2nd ed. San Francisco: Morgan Kaufmann, 2005.
[112]K. D. Kedarisetti, L. Kurgan, and S. Dick, "Classifier ensembles for protein structural class prediction with varing homology," Biochemical and Biophysical Research Communications, vol. 348, pp. 981-988, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top