(54.236.62.49) 您好!臺灣時間:2021/03/06 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖秤祥
研究生(外文):Cheng-Hsiang Liao
論文名稱:運用閘極工程減緩砷化鋁鎵/砷化銦鎵變晶式高速電子移動率電晶體之紐結效應
論文名稱(外文):Relieved Kink Effects of InAlAs/InGaAs MHEMTs though Gate Engineering
指導教授:李景松
指導教授(外文):Ching-Sung Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:紐結效應表面缺陷鎳金屬離子衝擊效應氮化矽覆蓋層
外文關鍵詞:surface trapkink effectimpact-ionizationSiNx passivationnickel metal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究以不同閘極工程之砷化銦鋁/砷化銦鎵變晶式高電子移動率電晶體(MHEMTs)。其閘極結構包括蒸鍍金、鎳/金(Ni/Au)以及於鎳/金上成長一層氮化矽覆蓋層(SiNx passivation)。

高銦含量之砷化銦鋁/砷化銦鎵變晶式高電子移動率電晶體之通道有著相當好的高頻應用以及低雜訊的特性。然而,高銦成分之砷化銦鎵通道存在著紐結效應(kink effect)、低崩潰的特性進而限制元件在功率方面的應用。因此為了改善紐結效應,我們將於閘極上蒸鍍高功函數之鎳金屬,藉由減少片電流密度來壓抑離子衝擊效應(impact ionization)。此外,我們於擁有鎳金屬之砷化銦鋁之蕭特基層上成長氮化矽覆蓋層,藉以抑制紐結效應以及減少蕭特基層上的表面缺陷。

由實驗結果可知,鎳/金閘極之元件擁有最好的高頻以及低雜訊特性。此外,成長氮化矽之鎳/金閘極之元件得到最小的輸出轉導、最高增益、最好線性度、最大的崩潰進而得到最好的功率特性。因此,擁有氮化矽以及鎳/金閘極之砷化銦鋁/砷化銦鎵變晶式高電子移動率電晶體相當適合於高線性度以及高功率的應用方面。
In this thesis, the characteristics of the InAlAs/InGaAs metamorphic HEMT by gate engineering have been studied. The gate structures included evaporating Au, Ni/Au, and Ni/Au with SiNx passivation.

The In-rich channel of InAlAs/InGaAs MHEMTs have demonstrated excellent high frequency and low noise performance. However, high indium content of InGaAs-channel had the kink effects, low breakdown, and degraded power performance. In order to relieve the kink effects, evaporating nickel metal with high work function at the Schottky gate led to decrease the sheet carrier concentration and suppress impact ionization. Besides, we grown a SiNx passivation on the InAlAs Schottky layer with nickel metal which also contributed to repress kink effects and avoided surface trap generation.

From experimental results, the Ni/Au gate exhibited the best high-frequency performance and the minimum noise. Besides, the SiNx passivation with Ni/Au gate showed the lowest output conductance, the highest voltage gain, the best linearity, breakdown voltage, and power performances. Consequently, the InAlAs/InGaAs MEMTs with Ni/Au gate and SiNx passivation is suitable for high-power with good linearity MMIC applications.
Acknowledgement ..........................................i
Abstract (Chinese) ......................................ii
Abstract (English) .....................................iii
Figure Captions .........................................vi
Chapter 1 Introduction ...................................1
Chapter 2 Fundamental of MHEMTs...........................4
2-1 Introduction to MHEMTs ...............................4
2-2 MHEMTs Structure Layer Design ........................5
2-3 Kink Effect ..........................................8
Chapter 3 Device Structure and Fabrication ...............9
3-1 Device Structure .....................................9
3-2 The Method of Gate Engineer ..........................9
3-3 Device Fabrication ..................................10
3-3-1 Sample rienting ...................................10
3-3-2 Mesa Isolation ....................................11
3-3-3 Source and Drain Ohmic Contact Formation ..........11
3-3-4 Gate Schottky Contact Formation ...................12
3-3-5 Passivation Formation .............................13
Chapter 4 Experimental Results and Discussions ..........14
4-1 Hall Measurement ....................................14
4-2 DC Characteristics at 300K ..........................15
4-2-1 Current-Voltage Characteristics ...................15
4-2-2 Extrinsic Transconductance Characteristics ........16
4-2-3 Two-Terminal Breakdown Voltage Characteristics ....18
4-2-4 Output Conductance ................................18
4-3 RF Characteristics ..................................19
4-4 Power Characteristics ...............................21
4-5 Noise Characteristics ...............................22
4-6 Temperature-Dependent Characteristics ...............23
Chapter 5 Conclusions ...................................25
References ..............................................26
Figures .................................................30
[1]M. Kao, P. M. Smith, P. Ho, P. Chao, K. H. G. Duh, A. A. Jabra, and J. M. Ballingall, “Very high power-added efficiency and low-noise 0.15-μm gate length pseudomorphic HEMT’s,” IEEE Electron Device Lett., vol. 10, p. 580, 1989.

[2]G. M. Metze, J. F. Bass, T. T. Lee, A. B. cornfield, J. L. Singer, H. L. hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol. 11, p. 24, 1990.

[3]A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. M. Kang, K.y. Cheng, and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol 39, p. 2676, 1992.

[4]C. S. Wu, C. K. Pao, W. Yau, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, Z. bardai, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomprphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol. 43, p. 257, 1995.

[5]S. E. Rosenbaum, B. K. Kormanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol 43, p. 927, 1995.

[6]P. N. tung, P. Delescluse, D. Delagebeaudeuf, M. Laviorn, J. Chaplart, and N. T. Linh, “High speed low power DCFL using planar two-dimensional electron gas FET technology,” Electron. Lett., vol. 18, p. 517, 1982.

[7]S. sen, M. K. Pandey, R. S. Gupta, “Two-dimensional C-V model of AlGaAs/GaAs modulation doped field effect transistor (MODFET) for high frequency applications,” IEEE Trans. Electron Devices, vol. 46, p. 1818, 1999.

[8]F. Ali and A. Gupta, “HEMTs and HBTs; devices, fabrication, and circuits,” Artech House, Boston London, 1991.

[9]M. T. Yang, Y. J. Chan, C. H. Chen, J. I. Chyi, R. M. Lin, and J. L. Shieh, “Characteristics of pseudomorphic AlGaAs/InxGa1−xAs (0 ≤ x ≤ 0.25) doped-channel field-effect transistors.” J. Appl. Phys., vol. 76, pp. 2494, 1994.

[10]C. Nguyen and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers.” IEEE Trans. Electron Devices, vol. 48, pp. 472, 2001.

[11]L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron. Devices, vol. 39, no. 12, pp. 2007-2014, Dec. 1992.

[12]H. S. Yoon, J. H. Lee, J. Y. Shim, S. J. Kim, D. M. Kang, J. Y. Hong, W. J. Chang, and K. H. Lee, “Low noise characteristics of double-doped In0.52Al0.48As–In0.53Ga0.47As power metamorphic HEMT on GaAs substrate with wide head T-shaped gate,” in Proc. Indium Phosphide and Related Materials, 2002, pp. 201-204.

[13]Behet, M., Van Der Zanden, K., Borghs, G., and Behres, A., “Metamorphic InGaAs/InAlAs quantum well structure grown on GaAs substrate for high electron mobility transistor applications,” Appl. Phys. Lett., 1998, vol. 73, p. 2760-2762.

[14]Contrata, W., Iwata, N., “Double-doped In0.35Al0.65As/In0.35Ga0.65 As power heterojunction FET on GaAs substrate with 1 W output power,” IEEE Electron Device Letters, vol. 20, July 1999 p.369 – 371.

[15]Hoke, W.E., Lemonias, P.J., Lyman, P.S., Torabi, A., Marsh, P.F., Mctaggart, R.A., Lardizabal, S.M., and Hetzler, K., “Molecular beam epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates,” J. Vac. Sci. Technol. B, 1999, vol. 17, p.1131-1135.

[16]K. Ouchi., T. Mishima, M. Kudo, and H. Ohta, “Gas-source molecular beam epitaxy growth of metamorphic InP/In0.5Al0.5As/In0.5Ga0.5As/InAsP high-electron-mobility structures on GaAs substrates,” Jpn. J. Appl. Phys., vol. 41, pp. 1004-1007, 2002.

[17]S. Bollaert, Y. Cordier, M. Zaknoune, H. Happy, V. Hoel, S. Lepilliet, D. Théron and A. Cappy, “The indium content in metamorphic InxAl1−xAs/InxGa1−xAs HEMTs on GaAs substrate: a new structure parameter.” Solid-State Electronics, Vol. 44, Issue 6, 2000, pp. 1021-1027.

[18]S. Bollaert, Y. Cordier, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “0.06 μm Gate length metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs with high fT and fmax,” in Proc. Indium Phosphide Rel. Mater., 2001, pp. 192-195.

[19]Suemitsu T., Enoki T., Sano N., Tomizawa M., Ishii Y., “An analysis of the kink phenomena in InAlAs/InGaAs HEMT''s using two-dimensional device simulation,” Electron Devices, IEEE Transactions on, vol. 45, no. 12, Dec. 1998 p.2390-2399.

[20]Somerville M. H., Ernst A., del Alamo J. A., “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” Electron Devices, IEEE Transactions on, vol. 47, no. 5, May 2000 p.922-930.

[21]Horio K., Wakabayashi A., “Numerical analysis of surface-state effects on kink phenomena of GaAs MESFETs,” Electron Devices, IEEE Transactions on, vol. 47, no. 12, Dec. 2000 p.2270-2276.

[22]Haruyama J., Negishi H., Nishimura Y., Nashimoto Y., “Substrate-related kink effects with a strong light-sensitivity in AlGaAs/InGaAs PHEMT,” Electron Devices, IEEE Transactions on, vol. 44, no. 1, Jan. 1997 p.25-33.

[23]Fazal Ali and Alitya Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, p.82.

[24]J. C. Huang, M. Zaitlin, W. Hoke, M. Adlerstein, P. Lyman, P. Saledas, G. Jackson, E. Tong, and G. Flynn, “A high-gain, low-noise 1/2-μm pulse-doped pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 10, p. 511, 1989.

[25]A. Fathimulls, J. Abrahams, T. Loughran, H. Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs”, IEEE Electron Device Letters, vol. 28, no. 19, p.1849, 1992.

[26]S. R. Bahl, J. A. del Alamo, “Elimination of mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, Electron Devices, IEEE Transactions on, vol. 13, no. 4, p.195, 1992.

[27]S. R. Bahl, M. H. Leary, J. A. del Alamo, “Mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, Electron Devices, IEEE Transactions on, vol. 39, no. 9, p.2037, 1992.

[28]G. I. Ng, W. P. Hong, D. Pavlidis, M. Tutt, P. K. Bhattacharya, “Characteristics of stained InGaAs/InAlAs HEMT with optimized transport parameters”, IEEE Electron Device Letters, vol. 9, no. 9, p439, 1988.

[29]S. R. Bahl, B. R. Bennett, J. A. Alamo, “Doubly stained InAlAs/n-InGaAs HFET with high breakdown voltage”, IEEE Electron Device Letters, vol. 14, no. 1, p. 22, 1993.

[30]R. T. Hsu, H. M. Shieh, W. C. Hsu, and T. S. Wu, “Enhanced current driving capability GaAs/graded InxGa1-xAs high electron mobility transisitor,” Solid-State Electron, vol. 36, p.1143, 1993.

[31]Y. J. Li, J. S. Su, Y. S. Lin and W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor,” Superlattices and Microstructures, vol. 28, p.47, 2000.

[32]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, H. M. Shieh, “Characterization of high performance inverted delta modulation doped (IDMD) GaAs/InGaAs psedomophic heterostructure FETs”, IEEE Trans. on, Electron Devices, vol. 9, no. 1, p.22, 1993.

[33]C. S. Lee, Y. J. Chen, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, “High-temperature threshold characteristics of a symmetrically graded InAlAs/InxGa1–xAs/GaAs metamorphic high electron mobility transistor.” Appl. Phys. Lett., 88, 223506 (2006).

[34]W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current In0.49Ga0.51As/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, p. 274,1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔