跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏松煙
研究生(外文):Sung-yen Wei
論文名稱:奈米粒子TiO2特性分析
論文名稱(外文):Characteristization of TiO2 Nanoparticles
指導教授:施仁斌
指導教授(外文):Jen-bin Shi
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:35
中文關鍵詞:特性奈米粒子二氧化鈦
外文關鍵詞:characteristicnanoparticleTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:802
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要討論由TiCl4為原料,在室溫下進行水解與縮和反應,藉由實驗中添加不同莫耳數的鹼液以調整溶液的pH值,而合成出不同晶相之TiO2奈米微粒,並對其以不同氣氛及不同溫度之熱處理,利用X-ray繞射儀(X-Ray Diffraction)、冷場發射掃瞄電子顯微鏡(Field Emission Scanning Electron Microscope)、紫外—可見光譜儀(UV-visible spectrometer)以及螢光光譜儀(Photoluminescence spectrometer)量測其結晶性、表面型態以及光學性質之變化。
  藉由不同氛圍及不同溫度熱處理,TiO2奈米粒子之結晶性及一次結晶粒徑受到實驗參數影響,在高真空缺氧環境下進行熱處理之TiO2奈米粒子產生一次結晶粒徑縮小之現象,而在充足氧氣的熱處理環境之下,TiO2奈米粒子一次結晶粒徑及結晶性則隨溫度上生而成長。光學方面,由吸收光譜得知,不同氛圍參數熱處理後,TiO2奈米粒子之間接能隙明顯受到影響而改變,高真空缺氧熱處理之TiO2奈米粒子間接能隙存在藍位移現象,而Rutile phase在高真空缺氧550℃熱處理環境下,其直接能隙明顯發生藍位移至3.31 eV。由放射光譜 可知缺氧處理後TiO2奈米粒子表面產生大量缺陷,而在氧離子缺陷能階處發生高強度的放射光,其波長約為465 nm與540 nm。
In this study, we tried to synthesize different phases TiO2 nanoparticle crystals by adjusting the pH value of the TiCl4 solution through the hydrolysis and condensation reaction at the room temperature, these products then treated with thermal process in different ambience and temperature. In order to measure variation of the crystalline property, surface morphology and optical properties of the different phases TiO2 nanoparticles, these particles were finally analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), utraviolet-visible spectrometer (UV) and photoluminescence spectrometer (PL).
From XRD analysis, the results appeared that the first order crystal diameter of these TiO2 nanoparticles were affected by the variation of the experiment parameter, the crystal diameter increased with the increasing of the oxygen concentration and the annealing temperature but decreased at 450℃ high vacuum ambient environment. In optical properties, we could obviously find that the indirect band gap varied with the different ambiences from the absorption spectrum, it existed a blue shift phenomenon at the high vacuum thermal process environment. In the other hand, we could also find that there was a obviously blue shift on the direct band gap of the 550℃ high vacuum thermal process one. Eventually, the emission spectrum revealed that there existed a great quantities of oxygen vacancies of particles at the high vacuum condition, the vacancies had a strong emission light at the 465nm and 540nm wavelength.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 v
第一章、緒論 1
第二章、文獻回顧及理論分析 3
2.1 二氧化鈦(Titanium dioxide, TiO2) 3
2.3 二氧化鈦之光學性質 12
2.3 溶膠—凝膠法(Sol-Gel) 16
第三章、實驗方法與步驟 18
3.1 X光繞射分析(X-Ray Diffraction, XRD) 18
3.2冷場發射掃瞄式電子顯微鏡分析(Field Emission Scanning Electron Microscopy, FESEM Analysis) 19
3. 3紫外光—可見光譜分析(UV-vis Spectrum Analysis) 19
3.4螢光光譜分析(Photoluminescence Spectrum Analysis) 19
第四章、實驗結果與討論 21
第五章、結論與未來工作 25
參考文獻 27
1.Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
2.Powder Diffraction File, 21, 1272.
3.A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37, (1972).
4.沈偉韌,趙文寬,賀飛,方佑齡,“TiO2光催化反應及其在廢水處理中的應用”,化學進展,4,(1998)。
5.M. A. Fox, M. Y. Dulay, “Heterogeneous Photocatalysis”, Chem. Rev., 93, 341, (1993).
6.A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735, (1995).
7.M. R. Hoffmann, S. T. Martin, W. Choi et al., “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., 95, 69, (1995).
8.K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, “Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination”, Chem. Mater., 16, 1165, (2004).
9.A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”, J. of Photochemistry and Photobiology C:Photochemistry Rev., 1, 1, (2000).
10.Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films”, J. Phys. Chem. A, 101, 8057, (1997).
11.M. Sadeghi, W. Liu, T-G. Zhang, P. Stavropoulos, and B. Levy, “Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis:Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2/Fe2O3”, J. Phys. Chem., 100, 19466, (1996).
12.M. Gräzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001)
13.工業技術研究院工業材料研究所-編印,“精密陶瓷個性及檢測分析”。
14.M. L. Calzda, R. Sirela, F. Carmona, B. Jimenez, J. Am. Ceram. Soc., 78, 1802, (1995).
15.B. Jirgensons, M. E. Straumanis, Colloid Chemistry, MvMillian Co., NEW YORK, (1962).
16.A. Hinsch, “Fraunhofer Institute for Solar Energy Systems”, GSAS conference, (2006).
17.Henglein, A. Top. Curr. Chem., 143, 113, (1988).
18.Henglein, A. Ber. Bunsen-Ges. Phys. Chem., 86, 241, (1982).
19.D. Duonghong, J. Ramsden, M. Gratzel, J. Am. Chem. Soc., 104, 2977, (1982).
20.D. Bahnemann, A. Henglein, Lillie, L. Spanhel, J. Phys. Chem., 88, 709, (1984).
21.D. Bahnemann, A. Henglein, L. Spanhel, Faraday Discuss. Chem. Soc., 78, 151, (1984).
22.R. F. Howe, M. Gratzel, J. Phys. Chem., 89, 4495, (1985).
23.A. J. Nozik, “In Photocatalytic Purification and Treatment of Waterand Air”, D. F. Ollis, H. Eds. Al-Ekabi, Elsevier Science Publishers: Amsterdam, p.39-48, (1993).
24.C. Kormann, D. W. Bahnemann, M. R. Hoffmann, J. Phys. Chem, 92, 5196, (1988)
25.D. W. Isr. Bahnemann, J. Chem., 33, 115, (1993)
26.L. Kavan, T. Stoto, M. Gratzel, D. Fitzmaurice, V. Shklover, J. Phys. Chem., 97, 9493, (1993)
27.M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem., 91, 4305, (1987)
28.E. Joselevich, I. Willner, J. Phys. Chem., 98, 7628, (1994)
29.W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem., 98, 13669, (1994)
30.Nasser P., Stephan W. K., Andre M., “introduction to semiconductor optics”, Prentice-Hall, New Jersey, 1993, p112.
31.Tauc J., “Amorphous and liquid semiconductors”, Plenum press, New York, 1974.
32.Dvoranová D.; Brezová V.; Mazúr M.; Malati M.A. “Investigations of metal-doped titanium dioxide photocatalysts.” Appl. Catal. B: Environ. 37, 91, (2002).
33.N. Daude, C. Gout, C. Jouanin, Phys. Rev. B, 15, 3229, (1977)
34.Serpone N, Lawless D, Khairutdinov R “Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization or direct transitions in this indirect semiconductor?”, J. Phys. Chem., 99, 16646, (1995)
35.F. Amtz, Y. Yacoby, Phys. Rev. Lett., 17, 857, (1966)
36.K. Vos, Krusemeyer, Solid State Commun., 15, 949, (1975)
37.A, Frova, P. J. Body, Y. S. Chen, Phys. Rev., 157, 157, (1967)
38.M. Cardona, Harbeke, G. Phys. Rev., 137, 1467, (1965)
39.W. N. Delgass, G. L. Haller, R. Kellerman, J. H. Lunsford, “Spectroscopy in Heterogeneous Catalysis”, Academic Press: New York, p.128, (1979)
40.E. Mooser, W. B. Pearson, In Progress in Semiconductors, Ed. A. F. Gibson, John Wiley & Sons: New York, Vol. 5, p53, (1960)
41.X. K. Zhao, J. H. Fendler, J. Phys. Chem., 95, 3716, (1991)
42.P. Salvador, Sol. Energy Mater., 6, 241, (1982)
43.A. K. Ghosh, F. G. Wakim, P. R. Adiss, Jr., Phys. Rev., 184, 979, (1969)
44.P. F. Chester, J. Appl. Phys., 32, 2233, (1961)
45.V. N. Bogomolov, L. S. Sochava, Sou. Phys. Solid State, 9, 2647, (1968)
46.R. A. Weeks, T. Purcell, Bull. Am. Phys. SOC., 13, 435, (1968)
47.T. Purcell, R. A. Weeks, Am. Ceram. SOC. Bull., 47, 757, (1968)
48.P. I. Jingsbury, Jr., W. D. Ohlsen, O. W. Johnson, Phys. Rev., 175, 1091, (1968)
49.D. P. Colombo, Jr., K. A, Roussel, J. Saeh, D. E. Skinner, R. M. Bowman, Chem. Phys. Lett., 232, 207, (1995)
50.N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, J. Phys. Chem., 99, 165, (1995)
51.陳靜誼,”Sol-Gel法中pH值對TiO2奈米微粒晶型之影響”,逢甲大學碩士論文,(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊