跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝紹慶
研究生(外文):Shao-Ching Hsieh
論文名稱:低折射率調制值與大分光角的全像偏極選擇元件之研究與製造
論文名稱(外文):Study and Fabrication of Holographic Polarization-Selective Elements with a Low Refractive Index Modulation Strength and a Wide Splitting Angle
指導教授:陳坤煌陳坤煌引用關係陳敬��
指導教授(外文):Kun-Huang ChenJing-Heng Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:基片型全像片偏極選擇元件耦合波理論大分光角低折射率調制值
外文關鍵詞:polarization-selective elementsubstrate-mode holograma wide splitting anglelow refractive modulation strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
根據耦合波理論和基片型全像片的架構,一個特殊設計具有大的分光角的偏極選擇元件之設計被提出。利用此設計,我們只需低的調制折射率值即可,因此使用一般的全像記錄材料便可達成。此外,本設計保留傳統全像片的所有優點。為了驗證本設計之可行,偏極選擇元件被製造,並且其相關特性參數被量測。其繞射角、調制折射率值、重建光波長和消光比分別為83.6∘、0.019、768.25 nm與 1102.24。
Based on the coupled-wave theory and the structure of substrate-mode holograms, a special design of polarization-selective elements is proposed at a relatively large splitting angle near 85∘. With this design, we need only a low refractive index modulation strength, which can be easily achieved by common recording materials. In addition, this design should bear all the merits of conventional substrate-mode holographic elements. In order to show the validity, polarization-selective elements were fabricated and their related characteristic parameters were measured. The diffraction angle, refractive-index modulation strength, reconstruction wavelength, and extinction ratio are about 83.6∘, 0.019, 768.25 nm, and 1102.24, respectively.
摘 要 i
Abstract ii
誌 謝 iii
目 錄 v
圖目錄 vii
表目錄 ix
縮寫與符號對照表 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 章節簡介 11
第二章 基片型全像偏極選擇元件 12
2.1 前言 12
2.2 傳統架構 14
2.2.1 耦合波理論 14
2.2.2 架構敘述與原理 22
2.3 小結 26
第三章 低折射率調制值與大分光角之全像偏極選擇元件 27
3.1 前言 27
3.2 元件設計與原理 27
3.2.1 元件設計 27
3.2.2 原理 30
3.3 實驗結果與討論 33
3.3.1 元件拍攝架構 33
3.3.2 實驗結果 35
3.3.3 討論 41
3.4 小結 45
第四章 結論與未來展望 46
4.1 結論 46
4.2 未來展望 47
參考文獻 48
作者簡介 55
[1] D. Gabor, “A New Microscope Principle,” Nature, Vol. 166, 777-778, (1984).
[2] Lippmann''s and Gabor''s Revolutionary Approach to Imaging, http://nobelprize.org/nobel_prizes/physics/articles/biedermann.
[3] R. K. Curran and T. A. Shankoff, “The Mechanism of Hologram Formation in Dichromated Gelatin,” Appl. Opt., 9, 1651-1657 (1970).
[4] A. Fimia, I. Pascual and A. Belendez, “Silver halide sensitized gelatin as a holographic recording material,” Optic and Laser Tech., 27, 285-292 (1995).
[5] James (Jang-Hun) Yeh, Austin Harton and Karl Wyatt, “Reliability study of holographic optical elements made with DuPont photopolymer,” Appl. Opt., 37, 6270-6274 (1998).
[6] Sing H. Lee, “Computer generated holography: an introduction,” Appl. Opt., 26, 4350 (1987).
[7] S. Reinhorn, Y. Amitai and A. A. Friesem, “Computer-originated planar holographic optical elements,” Appl. Opt., 37, 3031-3037 (1998).
[8] G. A. De Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt., 27, 2017-2021 (1988).
[9] J. T. Chang, D. C. Su and Y. T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt., 12, 8143-8245 (1994).
[10] J. H. Chen and D. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Optics Express, 11, 2001-2006 (2003).
[11] J. H. Chen, P. J. Hsieh and D. C. Su, “Multi-port polarization-independent optical quasi-circulators by using a pair oh holographic spatial- and polarization- modules,” Optics Express, 12, 601-608 (2004).
[12] Y. W. Zhang, C. S. Ih, H. F. Yan and M. J. Chang, “Photovoltaic concentrator using a holographic optical element,” Appl. Opt., 27, 3556-3560 (1988).
[13] 電子資訊與通訊光電-93年度-具有光子晶體之白光LED, http://www.itri.org.tw/chi/rnd/advanced_rnd/telecom_optoelectron/XB93-06.jsp
[14] Dong-Ho Kim et al., “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Opt. Lett., 87, 203508 (2005).
[15] Y. C. Zhong et al., “Photonic crystal with diamondlike struncture fabricated by holographic lithography,” Appl. Opt. Lett., 87, 061103 (2005).
[16] R. K. Kostuk T.-J. Kim, G. Campbell and C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett., 19, 1257-1259 (1994).
[17] M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama and Y. Sugita, “Compact magnetooptical disk for coded data storage,” Appl. Opt., 25, 483-489 (1986).
[18] J.-M. Desse, Fe´ lix Albe and J.-L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt., 41, 5326-5333 (2002).
[19] F. B. McCormick et al., “Experimental investigation of a free-space optical switching network using symmetric self-electro-optics-effect devices,” Appl. Opt., 31, 5431-5446 (1992).
[20] Q. W. Song, M. C. Lee and P. J. Talbot, “Polarization sensitivity of birefringent photorefractive holograms and its applications to binary switching,” Appl. Opt., 31, 6240-6246 (1992).
[21] Y. T. Huang and Y. H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett., 18, 921-923 (1993).
[22] N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii and Y. Inoue, “Waveguide Polarization-Independent Optical Circulator,” IEEE Photon. Technol. Lett., 11, 355-357 (1999).
[23] Lin-Dou Wang, “High-isolation polarization-independent optical quasi-circulator with a simple structure,” Opt. Lett., 23, 549-551 (1998).
[24] Giuseppe A. De Biase, ” Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt., 27, 2017-2021 (1988).
[25] J. Nicholls, “Birefringent crystals find new niche in WDM networks,” WDM SOLUTION 3, 33-36 (2001).
[26] K. Shiraishi and S. Kawakami, “Spatial walk-off polarizer utilizing artificial anisotropic dielectrics,” Opt. Lett., 15, 516-518 (1990).
[27] T. Sato, K. Shiraishi, K. Tsuchida and S. Kawakami, “Laminated polarization splitter with a large split angle,” Appl. Phys. Lett., 61, 2633-2634 (1992).
[28] K. Shiraishi and K. Matsumura, “Fabrication of Spatial Walk-Off Polarizing Films by Oblique Deposition,” IEEE J. Quantum Electron., 30, 2417-2420 (1994).
[29] K. Muro and K. Shiraishi, “Poly-Si/SiO2 Laminated Walk-Off Polarizer Having a Beam-Splitting Angle of More Than 20˚,” J. Lightwave Technol., 16, 127-133 (1998).
[30] R. K. Kostuk, M. Kato and Y. T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt., 29, 3848-3854 (1990).
[31] Y. T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt., 33, 2115-2120 (1994).
[32] C. Pu, Z. Zhu and Y.-H. Lo, “Surface Micromachined Integrated Optic Polarization Beam Splitter,” IEEE Photon. Technol. Lett., 10, 988-990 (1998).
[33] J. A. L’huiller et al., “Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method,” Appl. Opt., 41, 4377-4384 (2002).
[34] 李正中, “薄膜光學與鍍膜技術” ,藝軒圖書出版社, 1頁,2006年。
[35] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J., 48, 2909-2947 (1969).
[36] P. Hariharan, “Optical Holography,” Cambridge university press, 1996.
[37] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am., 71, 811-818 (1981).
[38] T. K. Gaylord and M. G. Moharam, “Analysis and Application of Optical Diffraction by grating,” Proc. IEEE, 73, 894-937 (1985).
[39] F. Sauer, “Fabrication of diffractive-reflective optical interconnects for infrared operation based on total internal reflection,” Appl. Opt., 28, 386-388 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文