跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊百曜
研究生(外文):Pai-yao Yang
論文名稱:碳纖維自行車前叉之剛性與強度分析
論文名稱(外文):Stiffness and Strength Analysis of Carbon Fiber Bicycle Front Fork
指導教授:劉文縉
指導教授(外文):Wen-Jinn Liou
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:96
中文關鍵詞:前叉靜態強度側向剛性正向剛性
外文關鍵詞:Front ForkAxial StiffnessTransverse StiffnessStatic Strength
相關次數:
  • 被引用被引用:19
  • 點閱點閱:1075
  • 評分評分:
  • 下載下載:231
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
在近幾年來,自行車產品不論在外觀設計或材質搭配上,已進入輕量化與個性化的時期。但由於碳纖維複合材料自行車成本高,因此市場上的需求量比金屬類自行車還要來得少,以致於無法大量生產。在碳纖維自行車尚未普及前,會選購碳纖維自行車大多數都是以自行車選手居多,而這些選手騎程的時間長,因此所需要的自行車通常都是以車身要輕、強度高、耐疲勞為主,並且需依照選手本身的身高體重手腳等尺寸來特別量身訂作。然而隨著人們生活水準提高,自行車多了休閒、健身登山等附加價值,而不再是代步工具。有鑑於此事前的研究分析將有助於開發生產。
本論文將以碳纖維自行車前叉作為主題做細部的討論。使用3D繪圖軟體Solid Works繪製模型並利用ANSYS有限元分析軟體探討碳纖維複合材料自行車前叉之剛性與強度,且採用歐洲自行車測試標準。材料以T300/Epoxy碳纖維為主。採取八種不同纖維排列方式,將此八種疊層轉換成等效工程常數來進行分析。在前叉厚度均勻的情況下,[0/0/0/30]s疊層有最佳的正向剛性值,而[0/45/90/-45]s疊層有最佳的側向剛性值。並且由正向剛性分析結果可以得知當施於正向負載時,肩蓋頂部區域若有較高的 即有較高的支撐力,便能得到最高的正向剛性。對於沒有到達測試標準的疊層,我們再將前叉肩蓋部位補強,來討論不同方向及厚度對於剛性的影響。
Abstract
The trend for bicycle design and materials is light and individualistic in recent years. The carbon fiber composite has become one of the indispensable materials for advanced bicycle. It is extensively applied and developed in the bicycle industry. The carbon fiber composite bicycle is more expensive then the metal bicycle, so the carbon fiber composite bicycle is not mass manufactured. Before the carbon fiber bicycle has not been popularized, most people choosing the carbon fiber bicycle are bickers. They spend long time for riding, so it needs light body, high intensity and endurance. They made it accord with biker’s height, weight and length of hand and foot. With improvement of people''s living standard, the bicycles have more added value as recreation and mountaineering, instead of walking.
In the present investigation, the stiffness and strength of carbon fiber bicycle front fork were discussed. With the results of the investigation, it is hoped that more reliable carbon fiber bicycle front forks can be made and will help the development and production of the bicycle industry.
Three dimensional drawing software Solid Works had been used to establish the front fork models. The developed models were incorporated into the finite element analysis software ANSYS to analyze the bending stiffness and strength of the front forks. Eight types of front fork laminations,the results were compared with the European Bicycle Standard. It was found that the maximum stresses occurred at the fork crown. In all eight types of laminations,[0/0/0/30]s lamination had better axial bending stiffness, while [0/45/90/-45]s lamination had better transverse bending stiffness. It was also noted that the higher of Young’s modulus, the better bending stiffness was obtained. For those front fork laminations which did not meet the testing standard, the thickness and lamination of the front fork crown were redesigned and reanalyzed. The effects of thickness and lamination of the front fork crown on the bending stiffness were also discussed.
目 錄
誌謝………………………………………………………………………Ⅰ
摘要………………………………………………………………………Ⅱ
Abstract…………………………………………………………………IV
目錄………………………………………………………………………VI
圗目錄……………………………………………………………………IX
表目錄…………………………………………………………………XII
符號說明………………………………………………………………XIII
第一章 緒論………………………………………………………………1
1.1簡介……………………………………………………………………1
1.2研究動機及方法………………………………………………………2
1.3文獻回顧………………………………………………………………4
1.4研究架構…………………………………………………………6
第二章 相關理論基礎……………………………………………………7
2.1複合材料相關理論……………………………………………………7
2.1.1古典層板理論(Classical Lamination Theory)…………………7
2.1.2單層板中應力與應變之關係………………………………………9
2.1.3複合材料疊層板的勁度矩陣………………………………………16
2.2複合材料疊層板轉換成等效模型之工程常數………………………20
2.3複合材料破壞準則……………………………………………………24
2.3.1 最大應力準則( Maximum Stress Criterion)………………………24
2.3.2 最大應變準則( Maximum Strain Criterion)………………………25
2.3.3 Tsai-Hill準則(Tsai - Hill Criterion)………………………………26
2.3.4 Tsai-Wu準則( Tsai - Wu Criterion )………………………………28
第三章 電腦模擬規劃及模型建立…………………………………30
3.1前言……………………………………………………………………30
3.2碳纖維前叉製作概述………………………………………………… 32
3.3電腦模擬處理…………………………………………………………34
第四章 碳纖維前叉模擬分析結果與討論………………………………46
4.1 碳纖維前叉剛性模擬分析 …………………………………………46
4.1.1碳纖維前叉正向剛性分析結果討論………………………………46
4.1.2碳纖維前叉側向剛性分析結果討論………………………………52
4.2 碳纖維前叉補強後剛性模擬 ………………………………………58
4.2.1碳纖維前叉補強後之正向剛性分析結果討論…………………58
4.2.2碳纖維前叉補強後之側向剛性分析結果討論…………………62
4.3 碳纖維前叉靜態強度模擬分析 ……………………………………65
4.3.1 前叉靜態強度分析結果討論……………………………………65
4.3.2 前叉補強後靜態強度分析結果討………………………………67
第五章 結論及未來展望…………………………………………………74
5.1結果討論………………………………………………………………74
5.2未來展望………………………………………………………………76
參考文獻…………………………………………………………………78
參考文獻
[1]Ron Nelson, “Bike Frame Races Carbon Consumer Goods Forward”, Reinforced Plastics, Vol. 47, pp. 36-40, 2003.
[2]Larry B. Lessard, James A. Nemes and Patrick L. Lizotte, “Utilization of FEA in The Design of Composite Bicycle Frames”, Composites, Vol. 26, pp. 72-74, 1995.
[3] R. R. Chang, “Finite Element Analyses and Experimental
Considerations of The Deflection and Failure Behavior of
Asymmetric Laminate Composite Bicycle Handlebar”, Proceedings
of The Institution of Mechanical Engineers Vol. 216 Part E pp.207-218, 2002.
[4]M. Quaresimin , G. Meneghetti and F. Verardo, “Design and Optimization of an RTM Composite Bicycle Crank”, Reinforced Plastics And Composites, Vol. 20, pp. 129-146, 2001.
[5]Cal Stone and M. L. Hull, “The Effect of Rider Weight on Rider-induced Loads During Common Cycling Situations”,
J. Biomechanics, Vol. 26, pp. 365-375, 1995.
[6]Holly Shelton, John Obie Sullivan and Ken Gall, “Analysis of The Fatigue Failure of Mountain Bike Front Shock”, Engineering Failure Analysis, Vol. 11 , pp. 375-386 , 2004.
[7] 康淵、翁嘉駿、何燾羽和馮威強, “ANSYS 進階” , 全華科技圖書股份有限公司 , 2004 .
[8] M. Xia , H. Takayanagi and K. Kemmochi, “Analysis of Transverse Loading for Laminated Cylindrical Pipes”, Composite Structures, Vol. 53 , pp. 279-285, 2001 .
[9] Jeffry S. Welsh and Donald F. Adams, “Testing of Angle-Ply Laminates to Obtain Unidirectional Composite Compression Strengths”, Composites Part A , Vol. 28 , pp. 387-396, 1997.
[10] Hiroshi Fukuda, Tetsuya Watanabe, Masaaki Itabashi and Atsushi Wada, “Compression Bending Test for CFRP pipe”, Composites Science And Technology, Vol. 62 , pp. 2075-2081, 2002.
[11] E. N. Buarque and J. R. M. d’ Almeida, “The Effect of Cylindrical Defects on The Tensile Strength of Glass Fiber/Vinyl-ester Matrix Reinforced Composite Pipes”, Composite Structures, Vo. 79, pp. 270-279, 2007.
[12] C. Yang, S. S. Pang, and Y. Zhao, “Buckling Analysis of Thick-Walled Composite Pipe Under External Pressure”, Journal of Composite Materials, Vol. 31 , pp. 409-426, 1997.
[13] R. F. Gibson, “Principles of Composite Material Mechanics “,
McGraw-Hill, Inc, 1994.
[14] Stephen W. Tsai, : Strength Theories of Filamentary Structures, in R.T. Schwartz and H.S. Schwartz(eds) , “Fundamental Aspects of Fiber Reinforced Plastic Composites”, Wiley Inter-Science, New York, pp. 3-11, 1968.
[15] 康淵 和 陳信吉, “ANSYS 入門”, 全華科技圖書股份有限公司, 2005.
[16] 黃忠良, “尖端複合材料(設計及應用)”, 復漢出版社, 1992.


[17] N.K. Naik, SK. N.M. Azad And P. Durga Prasad, “Stress and Failure Analysis of 3D Angle Interlock Woven Composites”, Journal of Composite Materials, Vol. 36 , pp.93-123, 2002.
[18] ANSYS Inc., ANSYS Release 10.0 Documentation: Element Reference – Element Library, 2006.
[19] Racing Bicycle-Safety Requirements and Ttest Methods, EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM, 2003.
[20] P. P. Benham and R. J. Crawford. Mechanics of Engineering Materials. Longman, Essex, UK, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top