跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸凡
研究生(外文):Yi-fan Chen
論文名稱:下水污泥堆肥施用過程有機物對重金屬與營養鹽移動性影響之研究
論文名稱(外文):The Organic compound effect on the mobility of metals and nutrients in land application of sewage sludge compost
指導教授:江康鈺江康鈺引用關係
指導教授(外文):Kung-Yuh Chiang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:172
中文關鍵詞:下水污泥堆肥重金屬遲滯因子
外文關鍵詞:retardation factorheavy metalsewage sludgecompost
相關次數:
  • 被引用被引用:4
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於探討施用不同腐熟程度之下水污泥堆肥於土壤,並在模擬降雨條件下,其施用過程重金屬與營養鹽之移動特性,同時進一步評估污泥堆肥中有機物與其移動性間之相關性。研究結果顯示污泥堆肥過程有機物之轉化,主要由初期之脂肪族及多醣類等有機化合物種類,逐漸轉化為腐熟堆肥之芳香族與烯烴類;並經施用於土壤層後,原堆肥與土壤層中之有機物官能基種類變化並不顯著,仍以芳香族或烯烴類之穩定結構為主,而滲出液中則出現芳香族及水氣之氫鍵結構為主。這些化合物對對植物來說,亦可作為固氮菌的碳源,促進植物生長、葉綠素合成和種子發芽等益處。
根據施用不同腐熟程度之下水污泥堆肥過程中重金屬之溶出率變化結果可知,直接施用下水污泥之金屬溶出率依序分別為Ni>Zn>Cu>Pb(低濃度金屬試驗組)及Ni>Zn>Pb>Cu(高濃度金屬試驗組);而施用未腐熟堆肥之金屬溶出率則分別依序為Ni>Zn>Cu>Pb(低濃度金屬試驗)及Ni>Zn>Pb>Cu(高濃度金屬試驗組);至於施用腐熟堆肥之重金屬溶出率為Zn>Ni>Cu>Pb(低濃度金屬試驗)及Zn>Pb>Cu>Ni高濃度金屬試驗組)。土壤層金屬質量分佈結果顯示,施用含低濃度重金屬之下水污泥及其堆肥腐熟成品,金屬銅、鋅與鎳以累積於�媦h土壤(10~30公分)為主,而金屬鉛則主要停留於堆肥與表層土壤(2~5公分)。
根據土壤層重金屬之遲滯因子分析結果顯示,施用污泥及其堆肥之重金屬遲滯能力依序分別為Ni>Zn>Cu>Pb(施用污泥試驗);Ni>Cu>Pb>Zn(未腐熟堆肥試驗);Ni>Pb>Cu>Zn(腐熟堆肥試驗),其中腐熟堆肥具有較高之金屬遲滯能力。此外,於施用腐熟或未腐熟堆肥之試驗過程可知,金屬鋅之遲滯因子較低,亦即其在土壤層中之移動性較高。另由土壤層滲出液之金屬銅、鋅、鉛及鎳分析結果亦可得知,施用未腐熟堆肥之土壤層滲出液中金屬含量較施用腐熟堆肥為高,其中滲出液尤以金屬鋅之含量最高。至於營養鹽(總氮)之分佈特性結果顯示,施用腐熟之污泥堆肥後,其土壤及滲出液中有較高之總氮含量,亦即施用腐熟之污泥堆肥於土壤,其可利用性之氮含量較高。
另根據滲出液物化特性與重金屬含量,以及堆肥腐熟程度與滲出液重金屬溶出量之相關性分析結果顯示, pH分別與Zn及Pb濃度呈現低度顯著正相關(p<0.01,r=0.299(Zn);p<0.01,r=0.319(Pb)),EC與Cu呈現顯著低度顯著正相關(p<0.01,r=0.257),而與Pb及Ni呈現顯著中度正相關(p<0.01,r=0.413(Pb);p<0.01,r=0.560(Ni))。此外,堆肥腐熟程度對滲出液中金屬鋅、鉛及鎳含量均呈現顯著差異性,亦即施用未腐熟污泥堆肥於土壤層中,土壤層滲出液之重金屬含量將較高。
This study investigated the mobility of heavy metals and nitrogen on immature or mature sewage sludge compost for land application. The experiments were conducted by simulated soil column with constant rainfall and relationship between the metal or nitrogen mobility and organic matter was also evaluated. The experimental results indicated that the functional group of Aliphatic and Polysacharides were transformed into the functional group of Aromatic and Alkene in sewage sludge composting. In case of the immature or mature compost for land application, the functional group of organic matter in compost and soil were changed insignificantly. However, the functional group of Aromatic in leachate from soil was measured. It would understand the organic matter transformation and facilitate the plant uptake.
Based on the results of the leachability of heavy metals in sludge, immature or mature sludge compost for land application, in case of the sewage sludge application, the leachabilities of metals were in decreasing order as Ni>Zn>Cu>Pb (low metal concentration test ) and Ni>Zn>Pb>Cu (high metal concentration test), respectively. In case of the immature compost application, the leachabilities of metals were in decreasing order as Ni>Zn>Cu>Pb (low metal concentration test) and Ni>Zn>Pb>Cu (high metal concentration test), respectively. Meanwhile, in case of the mature compost application, the leachabilities of metals were in decreasing order as Zn>Ni>Cu>Pb (low metal concentration test) and Zn>Pb>Cu>Ni (high metal concentration test), respectively. According to the results of land application of sludge or compost with low metal concentration, Zn, Cu and Ni were accumulated and detected at soil depth of 10-30 cm. However, Pb was remained at compost or soil depth of 2-5 cm.
In this study, the retardation factor of the metals in the soil was a critical factor for assessing the metals mobility. Accordingly, the results of retardation factor of the metals were Ni>Zn>Cu>Pb (sludge test), Ni>Cu>Pb>Zn (immature compost test), and Ni>Pb>Cu>Zn (mature compost test), respectively. These results would concluded that the mature compost had higher metal retardation ability. That is, the metals mobility was low relatively in mature compost land application. On the other hand, in case of the immature or mature compost application, Zn concentration of leachate was higher than other tested metals of that. Meanwhile, Zn is a metal with low retardation ability. Therefore, it could conclude that the Zn is a metal with higher mobility. The total nitrogen contents in soil and leachate were high during the land application of mature compost. This is due to the mature compost has higher availability of total nitrogen.
According to the results of relationship among the physicochemical characteristics of leachate, maturity of compost and heavy metals concentration of leachate, the relationship between the pH and Zn, Pb concentration was shown in positive corelationship insignificantly (p<0.01, r=0.299 (Zn); p<0.01, r=0.319 (Pb)). The relationship between the EC and Cu concentration was also shown in positive corelationship insignificantly (p<0.01, r=0.257). However, the relationship between the EC and Pb, Ni concentration was shown in positive corelationship significantly (p<0.01,r=0.413(Pb);p<0.01,r=0.560(Ni)). In this study, the results also indicated that the relationship between the maturity of compost and heavy metals concentration of leachate was significant. The heavy metals concentrations of leachate were high while the immature compost was applied as the fertilizer for the agricultural application.
誌謝……………………………………………………... Ⅰ
摘要……………………………………………………………... Ⅱ
英文摘要………………………………………………….……. Ⅳ
目錄……………………………………………………………... Ⅵ
圖目錄…………………………………………...………...…. Ⅷ
表目錄……………………………………….…..…….……... Ⅹ
第一章 前言………………………….…................... 1
第二章 文獻回顧……………..……………..………….….. 4
2-1下水污泥組成…………………………….. 4
2-2 國內污水處理廠處理概況……..……………. 7
2-2-1 國內污泥處理流程………………………..…. 8
2-2-2 下水污泥資源化………………..……..… 9
2-3 下水污泥堆肥化技術………………….……..… 10
2-3-1 堆肥之物化特性…………………………… 10
2-3-2 堆肥之腐熟指標………………..……..… 12
2-3-3 下水污泥堆肥過程有機物變化…………..…15
2-4 金屬離子與有機物反應之基本特性……………..20
2-4-1 金屬與有機物錯合機制…………………… 20
2-4-2 堆肥過程中有機物質與重金屬之錯和特性…20
2-4-3 重金屬移動特性………………………………22
2-4-4 重金屬移動之研究比較…...…………..… 25
第三章 實驗材料與方法.................................30
3-1 堆肥實驗材料………………………………......30
3-2 實驗設備與方法…………………………....……32
3-2-1 堆肥設備與試驗方法…………..……..… 32
3-2-2 土壤管柱淋洗試驗……………………………36
3-3 實驗分析方法………………………..……………41
3-3-1 堆肥實驗分析項目……………..……..… 41
3-3-2 土壤管柱實驗分析項目………………………45
第四章 結果與討論...…………………………………………..50
4-1 都市污水污泥堆肥基本性質與腐熟度分析結果…50
4-1-1 堆肥過程含水率之變化…………………..…50
4-1-2 堆肥過程pH之變化……………………………51
4-1-3 堆肥過程電導度之變化………………………53
4-1-4 堆肥過程溫度之變化…………..……..… 54
4-1-5 堆肥過程總碳及總氮之濃度變化……...….56
4-1-6 堆肥過程重金屬之濃度變化……………....57
4-2 堆肥施用過程有機物官能基之變化………….….68
4-2-1 污泥與污泥堆肥之有機物官能基變化………68
4-2-2 土壤層有機物官能基之消長…………………75
4-2-3 土壤層滲出液之有機物官能基變化…………82
4-2-4 下水污泥堆肥重金屬與有機物之相關性探討87
4-3 下水污泥堆肥施用過程之重金屬移動性評估……91
4-3-1 下水污泥堆肥之金屬變化與溶出率…………91
4-3-2 施用下水污泥或堆肥後土壤層之金屬質量分佈特性94
4-3-3 土壤滲出液之性質分析………………………104
4-3-4 金屬銅、鋅、鉛及鎳於土壤層之遲滯因子…114
4-3-5 滲出液物化特性間之相關性探討……………119
4-4 下水污泥堆肥施用過程之總氮移動性評估………122
4-4-1 下水污泥堆肥總氮減少率……………………122
4-4-2 下水污泥堆肥施用後土壤層之總氮質量分佈123
4-4-3 土壤層滲出液之總氮趨勢變化………......125
第五章 結論與建議…………………………………...……....127
5-1 結論………………………………………………..127
5-2 建議…………………………………………….….129
第六章 參考文獻……………...…………………………………130

圖 目 錄
圖1-1 研究流程圖………………………………………..… 3
圖2-1 污泥處理處置……………………………………………9
圖2-2 下水污泥資源化之各種途徑……………………………10
圖2-3 重金屬在土壤中之反應機制……………………………20
圖2-4 重金屬在土壤中之特性分類……………………………23
圖3-1 堆肥反應設備示意圖……………………………………33
圖3-2 土壤質地分類三角圖……………………………………36
圖3-3 管柱淋洗示意圖…………………………………………38
圖4-1 都市污水污泥堆肥過程含水率之變化情形……..……51
圖4-2 下水污泥堆肥過程pH之變化情形……………….…….53
圖4-3 下水污泥堆肥過程EC之變化……………………….….54
圖4-4 下水污泥堆肥化過程溫度之變化………………………55
圖4-5 下水污泥堆肥過程總碳(TC)與總氮(TN)變化情形……56
圖4-6 下水污泥堆肥銅總量變化………………………………59
圖4-7 下水污泥堆肥鋅總量變化………………………………60
圖4-8 下水污泥堆肥鉛總量變化………………………………61
圖4-9 下水污泥堆肥鎳總量變化………………………………62
圖4-10 低濃度金屬試驗組金屬質量平衡………………………64
圖4-11 高濃度金屬試驗組金屬質量平衡………………………65
圖4-12 下水污泥與木屑FTIR光譜分析……………….……….69
圖4-13 不同腐熟程度之下水污泥堆肥有機物官能基變化……71
圖4-14 下水污泥與其不同腐熟程度之堆肥施用於土壤後之有機物官能基變化比較…………………………………………………...75
圖4-15 原始土壤之有機物官能基種類…………………………76
圖4-16 土壤層有機物官能基變化………………………………82
圖4-17 土壤層滲出液中有機物官能基變化……………………83
圖4-18 土壤層金屬銅質量分佈百分比…………………………98
圖4-19 土壤層金屬鋅質量吸附百分比…………………………99
圖4-20 土壤層金屬鉛質量分佈比例……………………………101
圖4-21 土壤層金屬鎳質量吸附百分比…………………………103
圖4-22 土壤層滲出液pH之變化………………………….…….105
圖4-23 土壤層滲出液EC之變化………………………………..106
圖4-24 土壤層滲出液總有機碳(TOC)之變化……………….…107
圖4-25 土壤層滲出液總有機碳(TOC) 之質量累積變化……..108
圖4-26 土壤層滲出液金屬銅濃度變化趨勢…………………..109
圖4-27 土壤層滲出液金屬銅之質量累積變化…………………109
圖4-28 管柱淋洗過程滲出液金屬鋅濃度變化趨勢……………111
圖4-29 管柱淋洗過程滲出液金屬鋅之質量累積變化…………111
圖4-30 管柱淋洗過程滲出液金屬鉛濃度變化趨勢……………112
圖4-31 管柱淋洗過程滲出液金屬鉛之質量累積變化…………113
圖4-32 管柱淋洗過程滲出液金屬鎳濃度變化趨勢……………114
圖4-33 管柱淋洗過程滲出液金屬鎳之質量累積變化…………114
圖4-34 下水污泥堆肥管柱淋洗後總氮分佈比例………………124
圖4-35 土壤層滲出液總氮變化趨勢……………………………126
圖4-36 土壤層滲出液總氮之累積變化趨勢……………………126

表 目 錄
表2-1 下水污泥基本性質…………………………………...…5
表2-2 下水污泥之重金屬含量…………………..………..….6
表2-3 我國都市污水處理廠污泥處理現況……...……………8
表2-4 堆肥腐熟化評估參數……………………………….....14
表2-5 各文獻之堆肥研究比較………………………...………17
表2-6 元素分類及其移動性…………………………...………23
表2-7 各吸附機制之特性………………………………...……24
表2-8 各文獻之重金屬移動性之研究…………………...……28
表3-1 各堆肥材料之物化特性分析………………………...…31
表3-2 堆肥資材之重金屬特性分析……………………...……32
表3-3 下水污泥堆肥之各組試驗材料量………………...……33
表3-4 管柱試驗土壤之物化特性分析結果……………...……37
表3-5 管住填充土壤資料………………………………...……39
表4-1 都市污水污泥堆肥含水率之重覆分析………………….51
表4-2 下水污泥堆肥pH之重複分析…………………………….52
表4-3 下水污泥堆肥EC之重複分析…………………………….54
表4-4 堆肥成品與堆肥規範之比較………………...…………57
表4-5 下水污泥堆肥之銅總量濃度重複分析結果………….…59
表4-6 下水污泥堆肥之鋅總量濃度重複分析結果………….…60
表4-7 下水污泥堆肥之鉛總量濃度重覆分析結果………….…61
表4-8 下水污泥堆肥之鎳總量濃度重複分析結果………….…62
表4-9 歷年來研究下水污泥堆肥前後濃度比較……………….62

表4-10 下水污泥堆肥過程低濃度金屬試驗之金屬質量平衡及回收率變化………………………..……………………………………..66
表4-11 堆肥過程中有機物特定波峰之強度比值……………….72
表4-12 淋洗前後堆肥有機物官能基光譜分析結果…………….85
表4-13 堆肥過程有機物與高濃度金屬試驗組之相關性分析….89
表4-14 堆肥施用土壤後金屬溶出率比較…………………...…92
表4-15 金屬銅於土壤層之遲滯因子………………………...…116
表4-16 金屬鋅於土壤層之遲滯因子…………………...………117
表4-17 金屬鉛於土壤層之遲滯因子……………………...……118
表4-18 金屬鎳於土壤層之遲滯因子…………………………...119
表4-19 滲出液pH、EC、TOC、TN及重金屬之相關性分析……..121
表4-20 污泥堆肥施用之總氮減少率……………………...……123
表4-21 總氮質量分佈及回收率……………………………...…124
Ashworth, D.J., Alloway, B.J., (2004). Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc., Environmental Pollution, Vol. 127, pp. 137-144.
Antoniadis, V., Alloway, B.J.(2002). The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soil , Environmental Pollution, Vol. 117,pp.515-521.
Bernal, M.P., Navarro, A.F., Sanchez-Monedero, M.A., (1998). Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil., Soil Biological Biochemistry, Vol. 3, pp. 305-313.
Ciba, J., Zolotajkin, M. , Kluczka, J., Loska, K., Cebula, J., (2003). Comparison of methods for leaching heavy metals from composts., Waste Management, Vol. 23, pp. 897-905.
Cooke, C.M., Gove, L., Nicholson, F.A., Cook, H.F., Beck, A.J., (2001). Effect of drying and composting biosolids on the movement of nitrate and phosphate through repacked soil columns under steady-state hydrological conditions., Chemosphere, Vol. 44, pp. 797-804.
Fukumoto, Y., Osada, T., Hanajima, D., Haga, K., (2003). Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration-effect of compost pile scale., Bioresource Technology, Vol. 89, pp. 109-114.
Garrido, H.S.E., Vilchis, J.J., Andre, R.C., Garcia, L.J., Alvarez, R.A., Gorostieta, U.E., (2002). Aerobic thermophilic composting of waste sludge from gelatin-grenetine industry., Resources Conservation and Recycling, Vol. 34, pp. 161-173.
Gove, L., Cooke, C.M., Nicholson, F.A., Beck, A.J., (2001). Movement of water and heavy metals through sand and sandy loam amended with biosolids under steady-state hydrological conditions., Bioresource Technology, Vol. 78, pp. 171-179.
Hartlieb, N., Ertunc, T., Schaeffer, A., Klein, W., (2003). Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste., Environmental Pollution, Vol. 126, pp. 83-91.
Herck, P. Van, B.B. Van, d., Vogels, G., Vandecasteele, C., (2000). Application of computer modeling to predict the leaching behaviour of heavy metals from MSWI fly ash and comparison with a sequential extraction method., Waste Management, Vol. 20, pp. 203-210.
Hsu, J., Lo, S.L., (2001). Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure., Environmental pollution, Vol. 114, pp. 119-127.
Kaschl, A., Romheld, V., Chen, Y., (2002). The in fluence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils., The Science of the Total Environment, Vol. 291, pp.45-57.
Korboulewsky, N., Dupouyet, S., Bonin, G., (2002). Environmental Risks of Applying Sewage Sludge Compost to Vineyards: Carbon, Heavy metal, Nitrogen, and Phosphorus Accumulation., Journal of Environmental Quality, Vol. 31, pp. 5.
Lazzari, L., Sperni, L., Bertin, P., Pavoni, B., (2000). Correlation between inorganic(heavy metals) and organic(PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes., Chemosphere, Vol. 41, pp. 427-435.
Liang, C., Das, K., McClendon, C.R.W., (2003). The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend., Bioresource Technology, Vol. 86, pp. 131-137.
Luo, S., Netravali, A.N., (2003). A study of physical and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate during composting., Polymer Degradation and Stability, Vol. 80, pp. 59-66.
Mukhtar, S., Kenimer, A. L., Sadaka, S. S., Mathis, J.G., (2003). Evaluation of bottom ash and composted manure blends as a soil amendment material., Bioresource Technology, Vol. 89, pp. 217-228.
Nakasaki, K., Ohtaki, A.T., (2001). Effect of bulking agent on the reduction of NH3 emissions during thermophilic composting of night-soil sludge., Waste Management and Research, Vol. 19, pp. 301- 307.
Ozturk, H. S., Ok, S.S., Arcak, S., (2004). Leaching of boron through sewage sludge amended soil:the role of clinoptilolite., Bioresource Technology, Vol. 95, pp. 11-14.
Paredas, C., Bernal, M.P., Cegarra, J., Roig , A., (2002). Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresource Technology, Vol. 85, pp. 1-8.
Navarro,P.J., Almendro,, M.B., Vidal,M.M., Jordan, S. J., (2003) Mobility of cadmium, chromium, and nickel through the profile of a calcisol treated with sewage sludge in the southeast of Spain”
Plassard, Frederic, Winiarski, Thierry, Michelle, (2000) Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies, Journal of Contaminant Hydrology, Vol. 42, pp. 99-111.
Ramachandran, V., Ouza, T. J. D., (1998)Plant Uptake of Cadmium, Zinc, and Manganese in Soils Amended with Sewage Sludge and City Compost, Bull. EnViron. Contam. Toxicol, Vol. 61, pp. 347-354.
Tchobanoglous, G., Theisen, H., Vigil, A.A., (1991)Integrated soild waste, pp.684-696.
Valtcho D.Zheljazkov., (2003)Application of high Cu compost to Swiss chard and basil, The Science of the Total Environment .,302,pp.13–26.
Wang, P., Changa, C.M., Watson, M.E., Dick, W.A., Chen, Y., Hoitin, H.A.J.(2004) “Maturity indices for composted dairy and pig manures”, Soil Biology & Biochemistry, Vol. 36, PP. 767-776
Watson-awksley (1991) INTEGRATED SLUDGE DISPOSAL STRATEGY”,Interim Reoprt for Hongkong EPD,June.
George, Tchobanoglous, Hilary Theisen,&Samuel A.Vigil,(1993)Integrated solid Waste Management”,McGRAW-HILL INTERNATIONAL EDITIONS.
Giovanni, G., Daniela, B.,Pier, L.,( 1996)Trace metals uptake and distribution in corn plants grown on 6-year urban waste compost amended soil,agriculture Ecosustems and Environment,58pp.199-206.
Hsu Jenn-Hung,Lo Shang-Lien, (2001)Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure.Environmental Pollution,114,pp.119-127.
S,anchez-Monedero M.A., Roig A., Paredes c., Bernal M.P.,( 2001)Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH,EC and maturity of the composting mixtures,Bioresource Technology,78,pp.301-308,.
L.Reijnders (2005)Dispisal, uses and treatments of combustion ashes: a review.Resources, conservation and Recycling, 43,313-336,.
Matos, A.T.de., (2000)Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution 111, 429-435
Li, Z., Shuman, L.M., Mobility of Zn, Cd, and Pb in soils as affected by poultry litter extractch I. Leaching in soil columns. Environmental Pollution 95, 219-226. 1997.
T. Van Gerven, D., “Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison” Waste Management 25 (2005) 75–87
Tessier, A., Campbell, P.G.C., Bisson, M., (1979). Sequential extraction
procedure for the speciation of paniculate trace metals. Anal. Chem.
51 (7), 844–850.
Yukselen, Al, Mehmet., (2001). Leaching of metals from soil contaminated by mining activities. Journal of Hazardous Materials B87,289–300.
中華土壤肥料學會,「土壤分析手冊-第二版」,中華土壤肥料學會,pp.65-71,1995。
江康鈺、嚴浩哲、張金濃,「燃煤飛灰對都市下水污泥堆肥過程重金屬像太及溶出特性影響之研究」,第15屆廢棄物處理技術研討會論文集,屏東,2000。
江康鈺、黃煌竣、黃淑暖,「應用天然沸石於下水污泥堆肥過程吸附攝取重金屬之可行性研究」第17屆廢棄物處理技術研討會論文集,中壢,2002。
朱海帆譯,Lyon, T.L.,「土壤學」,教育部,pp.267~292,台北市,1975。
袁紹英,「廢棄物堆肥化過程的微生物作用」,堆肥技術及其利用研討會論文,pp.67~83. 台北市,1994
張今濃,「添加劑與下水污泥共同堆肥過程重金屬穩定化之評估」,碩士論文,逢甲大學環境工程與科學研究所,台中,2001。
周武雄,「有機質添加對土壤中重金屬移動性影響之研究」,碩士論文,中央大學,中壢,1995。
張碧芬,「鎘及鉛在垃圾層及土壤層中移動之研究」,博士論文,台灣大學濃化研究所,台北,1989。
張金濃,「添加劑與下水污泥共同堆肥過程重金屬穩定化之評估」,碩士論文,逢甲大學環境工程與科學研究所,台中,2001。
黃煌竣,「利用沸石與石灰改善下水污泥堆肥重金屬移動性之研究」,碩士論文,逢甲大學環境工程與科學研究所,台中,2002。
黃淑暖,「都市下水污泥堆肥過程重金屬與有機物轉化之相關性研究」,碩士論文,逢甲大學環境工程與科學研究所,台中,2003。
蔡旻志,「沸石對下水污泥堆肥重金屬吸附與攝取特性影響之研究」,碩士論文,逢甲大學環境工程與科學研究所,台中,2005。
陳仁山,「模擬下水污泥堆肥施用過程氮及重金屬移動性之評估研究」,碩士論文,逢甲大學環境工程與科學研究所,台中,2005。
歐陽嶠暉,「都市污水處理廠之污泥處理與資源化再利用之研究」,內政部營建署委託研究計畫,1998。
林俊義,「禽畜糞堆肥之製造」,堆肥製造技術,pp.107~142.台中縣,1999。
謝欽城,「如何控制堆肥品質」,堆肥製造技術,pp.65~72,台中縣,1999。
簡宣裕,「堆肥品質鑑定方法」,堆肥製造技術,pp.73~81台中縣,1999。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊