(3.231.166.56) 您好!臺灣時間:2021/03/08 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戈啟威
研究生(外文):Chi-Wei Ge
論文名稱:室溫離子液體萃取水溶液中蘇丹紅染料之研究
論文名稱(外文):Room Temperature Ionic Liquid as a Novel Solvent for Extraction of Sudan Dye from Aqueous Solution
指導教授:喻家駿
指導教授(外文):Jya-Jyun Yu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:去除率萃取蘇丹紅染料室溫離子液體
外文關鍵詞:Sudan dyeroom temperature ionic liquidsextraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工業發展的進步,許多人工合成的染料開始被大量製造,其中苯胺類之偶氮染料,蘇丹一號及二號,除了應用於染料工業中當作著色劑外,更被用為食品之增色劑,但由於此系列染料有其可能之致癌性,因此許多國家禁止使用蘇丹紅染料作為食品中的染色劑。室溫離子液體(Room Temperature Ionic Liquids)有著室溫下幾乎無發揮性、不易燃以及較無毒性等特性,因此在液相-液相萃取中被用來替代部分對環境及人體有所危害之傳統有機溶劑,如苯及氯仿等。本研究為探討離子液體對蘇丹紅染料之移除效率,所使用的離子液體為[bmpl][Tf2N]以及[bmim][PF6]兩種。在相關參數中主要有酸鹼性、染料濃度、萃取比例以及離子液體類型。
第一部份為離子液體對蘇丹紅染料之40%硫酸水溶液進行萃取後,發現[bmim][PF6]會有水解之現象產生,[bmpl][Tf2N]則無此現象。[bmim][PF6]萃取比例為10:1、20:1、50:1及100:1時對蘇丹一號之萃取效率分別為99.6%、97%、0%及0%;對蘇丹二號之萃取效率則分別為98.5%、97%、0%及0%。這是因為[bmim][PF6]在水中之溶解度較大,因此在萃取比例為50:1及100:1時皆溶入硫酸水溶液中。[bmpl][Tf2N]在萃取比例萃取比例為10:1、20:1、50:1及100:1時對蘇丹一號之萃取效率分別為99.6%、99.6%、99.6%及90%;對蘇丹二號之萃取效率則分別為98.5%、98%、95.9%及93.4%。
第二部份為離子液體對蘇丹一號之0.1M氫氧化鈉水溶液及蘇丹二號之1M氫氧化鈉水溶液進行萃取。[bmim][PF6]萃取比例為10:1、20:1、50:1、80:1及100:1時對蘇丹一號之萃取效率分別為99.3%、98%、92%、0%及0%;對蘇丹二號之萃取效率則分別為98.3%、98.3%、98.3%、0%及0%。[bmpl][Tf2N]在萃取比例為10、50及100時對蘇丹一號之萃取效率分別為99.3%、98%、97%、90%以及84%;對蘇丹二號之萃取效率則皆為98.3%。
In recent year, accompanied with industrial development, a variety of man-made synthetic dyes have been produced and used as colored substance. Among them, Sudan I and Sudan II, two types of azo dye, are also most commonly used as food colorant. However, these dyes are banned in many countries for they might trigger occurrence of cancer as food colorant. Under green technology idea, to provide a safer, less toxically, and reduce impacts to environment, the green chemicals or chemical process is more and more important. Room temperature ionic liquids (RTILs) substitute for organic solvent in liquid-liquid extraction therefore is well developed, for their superior characteristics with scarcely volatile, hard to flame, and less toxicity for human, make them popular.
In this study, mainly discuss were focused on the removal efficiency of Sudan I and Sudan II dyes in aqueous phase by Ionic liquids ([bmpl][Tf2N] and [bmim][PF6]). The experimental parameters of the study includes: pH of aqueous phase, dye concentration, water to ionic liquid extraction ratio, and types of ionic liquids used.
After extraction of Ionic liquid to Sudan dyes which dissolve in 40% sulfuric acid aqueous solution, the experimental results observed that a hydrolytic process of [bmim][PF6] was occurred, but not for [bmpl][Tf2N]. When the extraction ratio of Sudan I and Sudan II to ionic liquids ([bmim][PF6] and [bmpl][Tf2N]) was 10:1(v/v), the extraction efficiency were 99.6% and 98.5%, respectively. While the extracted ratio of water to [bmim][PF6] were 50:1(v/v) and 100:1(v/v), the ionic liquid was completely dissolve into sulfuric acid aqueous solution. The results of extraction of Ionic liquid to Sudan dyes dissolve in sodium hydroxide aqueous solution also investigated. The results indicated that except for the extracted ratio of aqueous Sudan dyes to [bmim][PF6] were 100:1(v/v), the extraction efficiency of other ratios of aqueous to the ionic liquid were around 84~99%.
中文摘要………………………………………………………I
英文摘要………………………………………………………II
目錄……………………………………………………………III
表目錄…………………………………………………………VI
圖目錄…………………………………………………………VII

第一章 緒論……………………………………………………1
1.1研究緣起與目的……………………………………………1
1.2研究內容……………………………………………………2
第二章 文獻回顧………………………………………………3
2.1染料之文獻回顧……………………………………………3
2.1.1染料之簡介………………………………………………3
2.1.2偶氮染料…………………………………………………3
2.1.3本研究染料之基本性質…………………………………4
2.1.3.1蘇丹一號………………………………………………5
2.1.3.2蘇丹二號………………………………………………6
2.1.4蘇丹紅染料之使用狀況及限制…………………………8
2.1.5蘇丹紅染料之製備方法…………………………………8
2.1.5.1蘇丹一號之製備………………………………………8
2.1.5.2蘇丹二號之製備………………………………………9
2.1.6蘇丹紅染料之危害………………………………………10
2.1.7近年來蘇丹紅相關事件…………………………………12
2.2離子液體之介紹……………………………………………14
2.2.1離子液體的種類…………………………………………14
2.2.2離子液體的性質…………………………………………15
2.2.2.1毒性……………………………………………………16
2.2.2.2熔點……………………………………………………18
2.2.2.3黏度……………………………………………………20
2.2.2.4密度……………………………………………………21
2.2.2.5配位能力………………………………………………22
2.2.2.6表面張力………………………………………………22
2.2.2.7與水之互溶性…………………………………………23
2.2.3離子液體的發展…………………………………………25
2.2.4離子液體的應用…………………………………………26
2.3本研究離子液體之基本性質………………………………28
2.3.1 [bmpl][Tf2N]之性質…………………………………28
2.3.2 [bmim][PF6]之性質……………………………………29
2.3.3離子液體之備製…………………………………………30
2.3.3.1[bmpl][Tf2N]之備製…………………………………30
2.3.3.2[bmim][PF6]之備製…………………………………31
第三章 實驗方法與設備………………………………………32
3.1實驗藥品……………………………………………………32
3.1.1實驗用藥品………………………………………………32
3.1.2分析用藥品………………………………………………33
3.2研究設備……………………………………………………33
3.3研究流程、操作與分析方法………………………………34
3.3.1研究流程…………………………………………………34
3.3.2操作方法…………………………………………………37
3.3.2.1染料廢水之製備………………………………………37
3.3.2.2萃取染料廢水…………………………………………38
3.3.3分析方法…………………………………………………40
3.3.4萃取效率之計算…………………………………………41
第四章 結果與討論……………………………………………42
4.1蘇丹紅40%硫酸水溶液之探討……………………………42
4.1.1酸性水溶液對離子液體之影響…………………………42
4.1.2以UV/Vis探討萃取過程…………………………………45
4.1.3不同反應濃度下染料濃度之探討………………………50
4.1.4不同萃取比例下染料濃度之探討………………………57
4.2蘇丹紅氫氧化鈉水溶液之探討……………………………64
4.2.1鹼性水溶液對離子液體之影響…………………………64
4.2.2以UV/Vis探討萃取過程…………………………………66
4.2.3不同反應濃度下染料濃度之探討………………………71
4.2.4不同萃取比例下染料濃度之探討………………………78
4.3蘇丹紅染料溶液之濃縮探討………………………………85
第五章 結論……………………………………………………87
第六章 參考文獻………………………………………………90
1.邱永亮譯,染色化學,徐氏基金會出版,1977。
2.邱永亮譯,染料之合成與特性,徐氏基金會出版,1987。
3.Material Safety Data Sheet, Sigma-Aldrich.
4.蘇丹染料的性質和用途-國家食品安全信息中心,http://www.fsi.gov.cn, 070602.
5.E. Mejia, Y.S. Ding, M.F. Mora, C.D. Garcia, “Determination of banned sudan dyes in chili powder by capillary electrophoresis”, Food Chem., 2007, 102, 1027-1033.
6.International Agency for Research on Cancer (IARC), “Some Aromatic Azo Compounds”, 1987, 8(7).
7.National Toxicology Program (NTP), Technical Report No. 226., ”Carcinogenesis Bioassay of C.I. Solvent Yellow 14 (CAS No. 842-07-9) in F344/N Rats and B6C3F1 Mice (Feed Study)”, 1978.
8.Federal Institute for Risk Assessment (BfR), “Dyes Sudan I to IV in food”, BfR Opinion of 19 November 2003.
9.International Agency for Research on Cancer (IARC), “Some Aromatic Amines, Anthraquinones and Nitroso Compounds, and Inorganic Fluorides Used in Drinkingwater and Dental Preparations”, 1987, 27(7).
10.Chemical Industry Institute of Technology (CIIT), ”104-Week chronic toxicity study in rats. Aniline hydrochloride. Final report.”, Research Triangle Park, NC, 1982.
11.Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), “Draft Risk Assessment Report of 13.02.2002, Aniline”, 2002.
12.Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE) Opinion on the results of the Risk Assessment of Aniline (adopted during the 37th plenary meeting of 1 April 2003), 2003.
13.International Agency for Research on Cancer (IARC), “Some Aromatic Amines and Related Nitro Compounds (Hair Dyes, Colouring Agents and Miscellaneous Industrial Chemicals)”, 1987, 16(7).
14.E.K. Weisburger, A.B. Russfield, F. Homburger, J.H. Weisburger, E. Boger, C.G. Van Dongen, K.C. Chu, “Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity”, J Environ Pathol Toxicol, 1978, 2, 325-356.
15.Official Journal of the European Union, “COMMISSION DECISION of 20 June 2003 on emergency measures regarding hot chilli and hot chilli products(2003/460/EC)”, 2003.
16.Official Journal of the European Union,” COMMISSION DECISION of 21 January 2004 on emergency measures regarding chilli and chilli products (2004/92/EC)”, 2004.
17.P. Wasserscheid, R.V. Hal, K. Bosmann, “1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even greener ionic liquid”, Green Chem., 2002, 4, 400-404.
18.物質安全資料表,工業研究技術院工業安全衛生技術發展中心。
19.R.J. Bernot, M.A. Brueske, M.A. Evans-White, G.A. Lambert, “ACUTE AND CHRONIC TOXICITY OF IMIDAZOLIUM-BASED IONIC LIQUIDS ON DAPHNIA MAGNA”, Environ. Toxicol. Chem., 2005, 24, 87-92.
20.A.S. Wells, V.T. Coombe, “On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids”, Org. Process Res. Dev., 2006, 10, 794-798.
21.H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, “Thermal properties of imidazolium ionic liquids”, Thermochim. Acta, 2000, 357–358, 97–102.
22.Ionic Liquids – Suche, http://ildb.merck.de/ionicliquids/en/SearchPage.htm, 070515.
23.P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graetzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts”, Inorg. Chem., 1996, 35, 1168–1178.
24.K.R. Seddon, A. Stark, M.J. Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic solids”, Pure Appl. Chem., 2000, 72, 2275–2287.
25.D.R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G.B. Deacon, “Low viscosity ionic liquids based on organic salts of the dicyanamide anion”, Chem. Commun., 2001, 16, 1430–1431.
26.Y.A. Sanmamed, D. González-Salgado, J. Troncoso, C.A. Cerdeiriña, L. Romaní, “Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry”, Fluid Phase Equilib., 2007, 252, 96–102.
27.K.R. Harris, M. Kanakubo, L.A. Woolf, “Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Methyl-3-octylimidazolium Hexafluorophosphate and 1-Methyl-3-octylimidazolium Tetrafluoroborate”, J. Chem. Eng. Data, 2006, 51, 1161-1167.
28.Okoturo, T.J. VanderNoot, “Temperature dependence of viscosity for room temperature ionic liquids”, J. Electroanal. Chem., 2004, 568, 167-181.
29.J.M. Crosthwaite, M.J. Muldoon, J.K. Dixon, J.L. Anderson, J.F. Brennecke, “Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids”, J. Chem. Thermodyn., 2005, 37, 559-568.
30.H. Shirota, A.M. Funston, J.F. Wishart, E.W. Castner, Jr., “Ultrafast dynamics of pyrrolidinium cation ionic liquids”, J. Chem. Phys., 2005, 122, 184512.
31.K.N. Marsh, J.A. Boxall, R. Lichtenthaler, “Room temperature ionic liquids and their mixtures—a review”, Fluid Phase Equilib., 2004, 219, 93-98.
32.Y. Chauvin, H.Olivier-Bourbigou, “Nonaqueous ionic liquids as reaction solvents”, Chem. Tech., 1995, 25, 26-30.
33.J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation”, Green Chem., 2001, 3, 156-164.
34.Surface tension values of some common test liquids for surface energy analysis, http://www.surface-tension.de/, 070529.
35.C.F. Poole, “Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids”, J. Chromatogr. A, 2004, 1037, 49–82.
36.P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 405–422.
37.F.N. Hurley, T. P Wier, J. Electrochem. Soc., 1951, 98, 207–212.
38.H.L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, ” Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt”, J. Am. Chem. Soc., 1975, 11, 3264-3265.
39.a)T.B. Scheffler, C.L. Hussey, K.R. Seddon, C.M. Kear, P.D. Armitage, “Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-)”, Inorg. Chem. 1983, 22, 2099-2100.
b)T.M. Laher, C.L. Hussey, “Copper(I) and copper(II) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid”, Inorg. Chem., 1983, 22, 3247-3251.
40.J.S. Wilkes, M.J. Zaworotko, “Air and Water Stable I-Ethyl-3-methylimidazolium Based Ionic Liquids”, J. Chem. Soc., Chem. Commun., 1992, 13, 965-967.
41.D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, “Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases”, J. Phys. Chem. B, 1999, 103, 4164-4170.
42.D. A. Jaeger, C.E. Tucker, “Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt”, Tetrahedron Lett., 1989, 30, 1785-1788.
43.I.T. Horváth, J. Rábai, “Facile Catalyst Separation Without Water: Fluorous Biphase Hydroformylation of Olefins”, Science, 1994, 266, 72-75.
44.H. Luo, S. Dai, P.V. Bonnesen, “Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers”, Anal. Chem., 2004, 76, 2773–2779.
45.G.T. Wei, Z. Yang, C.J. Chen, “Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions“, Anal. Chim. Acta, 2003, 488, 183-192.
46.R. Vijayaraghavan, N. Vedaraman, M. Surianarayanan, D.R. MacFarlane, “Extraction and recovery of azo dyes into an ionic liquid”, Talanta, 2006, 69, 1059–1062.
47.C.P. Li, B.P. Xin, W.G. Xu, Q. Zhang, “Study on the extraction of dyes into a room-temperature ionic liquid and their mechanisms”, J. Chem. Technol. Biotechnol., 2007, 82, 196–204.
48.A. Lewandowski, M. Galiński, “Carbon–ionic liquid double-layer capacitors”, J. Phys. Chem. Solids, 2004, 65, 281-286.
49.D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, “Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases”, J. Phys. Chem. B, 1999, 103, 4164-4170.
50.http://www.chem007.com/, 070522.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔