(3.238.36.32) 您好!臺灣時間:2021/02/27 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林后志
研究生(外文):How-Chih Lin
論文名稱:高澱粉類植物之厭氧醱酵產氫及乙醇
論文名稱(外文):Hydrogen and ethanol production from starch-rich plants by anaerobic fermentation
指導教授:林秋裕林秋裕引用關係
指導教授(外文):Chiu-Yue Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:乙醇厭氧醱酵甘藷氫氣澱粉
外文關鍵詞:sweet potatoanaerobic fermentationstarchbiohydrogenbioenthanol
相關次數:
  • 被引用被引用:5
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫氣和乙醇是未來具備潛能替代能源,使用高澱粉植物進行產氫及乙醇有許多優點,包括減少對化石燃料的依賴,並且不會增加溫室氣體的負擔。以高澱粉植物直接產氫及乙醇,較利用澱粉可省去精製程序,減少精製所費的能源。本研究先探討甘藷醱酵產氫及乙醇的環境因子與醱酵特性,作為樹薯、馬鈴薯與芋頭醱酵條件之設定依據。
以甘藷為基質,探討植種污泥、基質濃度、初始pH與粒徑對甘藷醱酵產氫與乙醇之影響,經測試黎明污水處理廠污泥等8種污泥,結果顯示黎明植種污泥有較高累積產氫量177 mL。基質濃度測試範圍為30-240 g 甘藷/L,顯示150 g甘藷/L能獲得最高氫氣產率1.236 mol H2/mol hexose。初始pH試驗範圍為4.0-9.0,最理想產氫初始pH為7.0,其產氫及乙醇產率各為0.847 mol H2/mol hexose和0.308 mol EtOH /mol hexose;最理想產乙醇初始pH為8.5,其產氫及乙醇產率各為0.596 mol H2/mol hexose和0.740 mol EtOH /mol hexose。將甘藷分為小於1.19、1.19-2.38、2.38-4.75、4.75-6.35及大於6.38 mm粒徑,以小於1.19與1.19-2.38 mm能獲得較大氫氣產率1.080-1.139 mol H2/mol hexose。
  醱酵產氫過程可分為遲滯期、產氫旺盛期及結束期,在典型的液態物 之厭氧醱酵產氫僅各出現一次。利用甘藷醱酵產氫,在第10-12小時產氫量明顯上升,第24-30小時產氫出現6-8小時之遲滯期,其後又有明顯產氫量,呈二階段產氫,其原因為甘藷呈溶解狀與非溶解狀醣所造成。
以甘藷最好的產氫條件作為樹薯、馬鈴薯及芋頭之醱酵條件,甘藷、樹薯、馬鈴薯及芋頭之氫氣產率各為0.738、0.612、0.313、0.034 mol H2/mol hexose,乙醇產率各為0.375、0.352、0.865、0.013 mol EtOH/mol hexose。甘藷未加入植種污泥也能醱酵產氫及乙醇;以甘藷、樹薯及馬鈴薯未添加植種污泥,『含表皮』與『未含表皮』之基質也都有醱酵現象。以未添加植種之甘藷醱酵,將菌種優勢培養後鑑定出Klebsiella oxytoca、Clostridium fimetarium、Grimontella senegalensis、Enterobacter asburiae及Escherichia coli、Ruminococcus schinkii及Lactovum miscens等7株菌,推測係植物本身內含者。
Hydrogen and ethanol are promising energy carriers of the future. Utilization of starch-rich crops as a feedstock for biohydrogen and bioethanol production has several advantages including the reduction of gasoline dependency without increasing the greenhouse gas emissions. Directly using crops for bioenergy production consumes less energy compared with the usage of starch substrates. Batch experiments were conducted at 35oC to investigate biohydrogen and bioethanol production and their environmental factor effects and fermentative characteristics. The results obtained from sweet potato fermentation were used to determine the biohydrogen and bioethanol production from cassava, potato and taro.
The effects of seed sludge, substance concentration, initial pH and particle size on hydrogen/ethanol production were investigated with sweet potato. Seed sludge obtained from a sewage treatment plant (Li-Ming, Taichung) resulted in a 177 mL of hydrogen. Substrate concentrations from 30-240 g sweet potato per litre were tested and the optimum value was 150 g sweet potato per liter with a hydrogen yield of 0.847 mol H2/mol hexose. An initial cultivation pH range of 4.0-9.0 resulted in an optimum hydrogen production pH of 7.0 with hydrogen and ethanol yields of 0.847 mol H2/mol hexose and 0.308 mol EtOH /mol hexose, respectively. Particle size effects were tested with <1.19 mm, 1.19-2.38 mm, 2.38-4.75 mm, 4.75-6.35 mm and >6.38 mm; the optimum value for hydrogen production was <1.19 mm and 1.19-2.38 mm with hydrogen yields of 1.080 and 1.139 mol H2/mol hexose, respectively.
Sweet potato, cassava, potato and taro were used as substrates with hydrogen yields of 0.738, 0.612, 0.313 mol and 0.034 mol H2/mol hexose, respectively. Their ethanol yields were 0.375, 0.352, 0.865 and 0.013 mol EtOH/mol hexose, respectively. Hydrogen and ethanol production from sweet potato, cassava and potato were observed without any seed addition. Seven indigenous species of bacteria were identified from a sweet potato fermenter without seed addition.
致謝--------------------------------------------I
摘要-------------------------------------------II
Abstract---------------------------------------IV
目錄-------------------------------------------VI
圖目錄---------------------------------------VIII
表目錄------------------------------------------X
式目錄----------------------------------------XII
第1章 緒論--------------------------------------1
第2章 文獻回顧----------------------------------3
2-1 生質能--------------------------------------3
2-2 暗醱酵產氫及乙醇----------------------------3
2-3 厭氧微生物生長環境因子----------------------9
2-3-1 物理性因子-------------------------------10
2-2-2 化學性因子-------------------------------11
2-4 高澱粉類植物-------------------------------13
2-4-1 甘藷-------------------------------------15
2-4-2 樹薯-------------------------------------15
2-4-3 馬鈴薯-----------------------------------16
2-4-4 芋頭-------------------------------------16
第3章 實驗材料與方法---------------------------18
3-1 實驗藥品-----------------------------------18
3-2 植種污泥-----------------------------------18
3-3 基質---------------------------------------19
3-4 營養鹽-------------------------------------21
3-5 厭氧程序與裝瓶-----------------------------21
3-6 分析方法-----------------------------------22
3-6-1 氣相分析---------------------------------22
3-6-2 液相分析---------------------------------23
3-6-3 醣類分析---------------------------------23
3-6-4 其他分析---------------------------------25
3-7 Gompertz Model-----------------------------25
3-8 Bioenergy計算------------------------------26
3-9 其他單位換算-------------------------------27
第4章 結果與討論-------------------------------28
4-1 甘藷醱酵產氫及乙醇-------------------------28
4-1-1 產氫之基質濃度---------------------------29
4-1-2 pH對產氫與乙醇之影響---------------------32
4-1-3 粒徑試驗---------------------------------39
4-1-4 溶解狀與非溶解狀醣對醱酵之影響-----------41
4-2 甘藷醱酵之菌種來源探討---------------------45
4-2-1 各種菌種對甘藷醱酵之影響-----------------45
4-2-2 高澱粉類植物醱酵試驗---------------------50
4-2-3 高澱粉類植物表皮對厭氧醱酵之影響---------55
4-2-5 甘藷直接醱酵菌相鑑定---------------------58
4-3 綜合討論與比較-----------------------------60
4-3-1 產氫與乙醇指標---------------------------61
4-3-2 二階段產氫-------------------------------62
4-3-3 醱酵菌源---------------------------------66
第5章 結論與建議-------------------------------69
第6章 References-------------------------------71
Broda D. M., Saul D. J., Lawson P. A., Bell R. G. and Musgrave D. R., Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat, International Journal of Systematic and Evolutionary Microbiology, Vol. 50, pp. 107–118, 2000

Bandaru V. V. R., Somalanka S. R., Mendu D. R., Madicherla N. R. and Chityala A., Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology, Enzyme and Microbial Technology, Vol. 38, pp. 209–214, 2006

Hakobyan M., Sargsyan H., and Bagramyan K., Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli, Biophysical Chemistry, Vol.115, pp. 55– 61, 2005

Jamai L., Ettayebi K., Yamani J. E., and Ettayebi M., Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase, Bioresource Technology, Vol. 98, pp. 2765–2770, 2007

Khanal S. K., Chen W. H., Li L. and Sung S., Biological hydrogen production: effects of pH and intermediate products, International Journal of Hydrogen Energy, Vol.29, pp.1123 - 1131, 2004

Li C. L., and Fang H.H.P., Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures, Environmental Science and Technology, Vol. 37, pp. 1–39, 2007

Lin C. Y., Lee C. Y., Tseng I. C., and Shiao I.Z., Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora, Process Biochemistry, Vol. 41, pp.915–919, 2006

Liu G. Z. and Shen J. Q., Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, Journal of bioscience and bioengineering Vol. 98, No. 4, pp. 251–256. 2004

Logan B. E., oh S. E., Kim Ins., and Ginkel S. V., Biological Hydrogen Production Measured in Batch Anaerobic Respirometers, Environ. Sci. Technol., Vol. 36, pp. 2530-2535, 2002

Matthies C., G���愯er A., Acker G., Schramm A., and Drake H. L., Lactovum miscens gen. nov., sp. nov., an aerotolerant, psychrotolerant, mixed-fermentative anaerobe from acidic forest soil, Research in Microbiology, Vol. 155, pp. 847–854, 2004

Mojović L., Nikolić S., Rakin M. and Vukasinović M., Production of bioethanol from corn meal hydrolyzates, Fuel, Vol. 85, pp. 1750–1755, 2006

Rieu-Lesme F. , Morvan B., Collins M.D., Fonty G., and Willems A., A new H2/CO2,-using acetogenic bacterium from the rumen: Description of Ruminococcus schinkii sp. nov. FEMS Microbiology Letters, Vol. 140, pp. 28l-286, 1996

Shigechi H., Koh J., Fujita Y., Matsumoto T., Bito Y., Ueda M., Satoh E., Fukuda H., and Kondo A., Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylas, Applied and environmental microbiology, Aug., pp. 5037–5040, 2004

Shin J. H., Yoon J. H., Ahn E. K., Kim M. S., Sim S. J., and Park T. H., Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1, International Journal of Hydrogen Energy, Vol. 32, pp. 192–199, 2007

Tortora G. J., Funke B. R., and Case C. L., Microbiology : an introduction (eighth edition), Pearson Benjamin Cummings, San Francisco, Calif., 2004

Vemuri G. N., Eiteman M. A., and Altman E., Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia coli, Applied and Environmental Microbiology, Apr., pp. 1715–1727, 2002

Wang C.H., Lu W.B., and Chang J.S., Feasibility study on fermentative conversion of rawand hydrolyzed starch to hydrogen using anaerobic mixed microflora, International Journal of Hydrogen Energy, In Press, Corrected Proof, Available online 29 June 2007

Yang H., and Shen J., Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch, International Journal of Hydrogen Energy, Vol. 31 pp. 2137–2146, 2006

Yokoi H., Saitsu A., Uchida H., Hirose J., Hayashi S., and Takasaki Y., Microbial Hydrogen Production from Sweet Potato Starch Residue, Journal of Bioscience and Bioengineering, Vol. 91, No. 1, pp. 58-63, 2001

Zhang T., Liu H., and Fang H.H.P., Biohydrogen production from starch in wastewater under thermophilic condition, Journal of Environmental Management, Vol. 69, pp. 149–156, 2003

Gerhard Gottschalk[撰] 曾義雄編譯, 細菌代謝, 藝軒圖書出版社, 台北, 1985

李佳盈, 以積聚菌種污泥進行厭氧產氫, 逢甲大學水利工程研究所碩士論文, 台中, 2003

林崇毅, 糖蜜廢水之能源化研究, 逢甲大學水利工程學系碩士論文, 台中, 2005

林祺能, 矽膠固定化細胞暗醱酵產氫技術, 逢甲大學化學工程學系博士論文, 台中, 2006

吳季芳, 以澱粉為碳源基質進行生物產氫, 成功大學化學工程系碩士論文, 台南, 2006

吳建中, 溫度對木糖醱酵產氫之影響, 逢甲大學水利工程學系碩士論文, 台中, 2005

黃雯靜, 纖維素物質之厭氧醇化, 逢甲大學環境工程與科學學系碩士論文, 台中, 2006

張逢源, UASB系統醱酵產氫之研究, 逢甲大學土木及水利工程研究所博士論文, 台中, 2004

張肇志, 澱粉以混合菌群厭氧醱酵產能源之研究, 逢甲大學環境工程與科學學系碩士論文, 台中, 2007

鄭旭輝, 重金屬及pH對醱酵產氫之影響, 逢甲大學環境工程與科學學系碩士論文, 台中, 2004

賴奇厚, 營養言對厭氧產氫之影響, 逢甲大學水利工程研究所碩士論文, 台中, 2002

鐘木宛亭, 厭氧混合菌群之木糖產氫, 逢甲大學環境工程與科學學系碩士論文, 台中, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔