(3.239.33.139) 您好!臺灣時間:2021/03/08 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉順財
研究生(外文):Shun-Tsai Liu
論文名稱:鐵心磁滯的暫態特性之研究
論文名稱(外文):Research of Transient Characteristics of Core Hysteresis
指導教授:黃思倫黃思倫引用關係
指導教授(外文):Sy-Ruen Huang
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:97
中文關鍵詞:單位體積釘住地點密度常數飽和磁化強度可逆磁化分量常數無磁滯曲線常數磁域耦合常數處罰函數之遺傳基因演算法J-A磁滯模型
外文關鍵詞:generic algorithm with penalty functionsaturation magnetizationreversible magnetization constantmagnetic domains coupling constantanhysteresis curve constantunit volume pinning location density constantJ-A hysteresis model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:460
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:2
在電力系統中,電力變壓器係藉由電磁轉換的原理,將電壓調整至最適當的電壓等級運轉,使電力系統達到最佳的供電狀況。因此,電力變壓器在電力系統中是非常重要的能源轉換設備。
在正常運轉狀況下,為了使變壓器具有低製造成本及高工作效率的優良性能,一般變壓器鐵心的磁通密度都設計在近乎飽和的狀態。但是,一旦線路發生故障或開關切換而產生的突波干擾時,變壓器鐵心將非常容易就進入飽和的狀態,此時變壓器的磁場的變化方式不再是弦波的變化方式,穩態的電磁轉換原理將不再適用。
本論文從探討鐵磁性材料的磁化機制出發,當鐵磁性材料內各磁域受到外加供應場時,磁域內磁極會產生旋轉,磁域壁會移動等特性作明確的解釋;並對鐵磁性材料之材料參數對磁化作用的影響作出具體的說明。
接著,針對鐵磁性材料之微型結構參數所建立的磁化模型來探討外部有供應場時磁性材料巨觀的磁化響應。目前常用的磁滯模型有Stoner-Wolhfarth (S-W)模型、Jiles-Atherton (J-A)模型、Globus模型和Preisach模型等四種,對每個模型作個簡要的概述,再將每個模型的特性作一比較後發現,J-A磁滯模型是最適用於變壓器鐵心鐵磁性材料所採用的模型。
鐵磁性材料之J-A磁滯模型內共有五個材料參數,分別是飽和磁化強度 、單位體積釘住地點密度常數 、可逆磁化分量常數 、無磁滯曲線常數 以及磁域間耦合常數 等。先就每個參數對磁滯特性的影響作靈敏度分析,以比流器的J-A磁滯模型為例,使用Matlab軟體撰寫程式模擬J-A磁滯模型,來說明各參數的改變對磁滯產生的影響。再說明如何以處罰函數之遺傳基因演算法,估計出J-A磁滯模型參數的最佳值。使用此方法最大的好處是往後只要實驗得知鐵心的磁滯曲線,即可準確的估計出此鐵心J-A磁滯模型的各項參數值。
利用EMTP之TACS功能建立出J-A模型來模擬鐵心的磁滯效應,並結合外部電路,對整個系統作電路模擬分析。這樣的作法,可以克服以往在使用EMTP進行鐵心磁滯曲線的模擬時,必須使用 Type 96非線性電感元件來建立16個片段線性來模擬磁滯曲線。因為,使用 Type 96非線性電感元件來模擬磁滯曲線時,並無法充份反應鐵心飽和時的磁滯特性。所以,並不適用於暫態的模擬或故障分析;而J-A磁滯模型就沒有這方面的問題。
最後,以麥寮供電系統發生單相接地故障的事故分析為例。其中,電力變壓器的磁滯特性採用J-A磁滯模型。將模擬所得之波形與暫態波形記錄器所記錄之波形比較可以得知,變壓器鐵心的磁滯特性採用本論文所提出之J-A磁滯模型是非常適用與準確的。
Abided by the principle of power system, power transformer via electro-magnetic converting theory adjusts voltage to the most optimal level for best operational condition and brings forth most ideal electricity supply condition to the power system. Consequently, power transformer places a significant role as energy converting equipment in power system.
In order transformer possesses advantages of low production cost and high work efficiency under normal operational situation, the operational point of flux density for core of transformer are nearly achieving saturated status in general designs. Once circuit faults or interferences caused by power switch, it easily forces core of transformer into saturated status. At then, alternating method of magnetic field in transformer has no longer responded as sine waves; hence, it is reasonable steady magnetic converting principle has no longer been useful.
This study aims to discussing magnetization mechanism of ferro-magnetic material. During ferro-magnetic material is pressed against external applied field, magnetic dipole within magnetic domain will cause rotation and magnetic domain wall will move. These above features have been done a further explanation. This study also presents a detailed description regarding the special parameters of ferro-magnetic material and its influences to magnetization.
Later on, with a focus on magnetization model built upon micro-structure parameters of ferro-magnetic material, it discusses the mass scope magnetization response of ferro-magnetic material with external applied field. Popular four kinds of these hysteresis models include Stoner-Wolhfarth (S-W) model, Jiles-Atherton (J-A) model, Globus model, and Preisach model. Firstly the working principle of per model have done a brief introduction, and then a comparison for magnetization features of per model would draw a conclusion that J-A hysteresis model is most ideal to core hysteresis model of transformer.
The entire J-A hysteresis model contains five significant material parameters, which are saturation magnetization, unit volume pinning location density constant, reversible magnetization constant, anhysteresis curve constant, and magnetic domains coupling constant. This study begins with running sensitivity analysis for per parameter of J-A hysteresis model to hysteresis influences. Such as current transformer J-A hysteresis model, it uses Matlab software to simulate J-A hysteresis model, and describes per parameter change to hysteresis influences. Then it interprets using generic algorithm with penalty function to calculate the optimal parameter values of J-A hysteresis model. The biggest advantage of using this method is it only requires core hysteresis data from exciting magnetic experiments, and then a precise estimation of per parameter of core J-A hysteresis model can be obtained.
Availing TACS function within EMTP, it establishes J-A model that simulates core hysteresis effect and combines external circuit and performs circuit simulation analysis to the entire system. Follow this way of method; it overcomes the disadvantages for using Type 96 non-linear electrical elements to build 16 linear pieces of hysteresis effect. Because using Type 96 non-linear induction elements simulate hysteresis effect, it can not fully answer to core hysteresis saturation features. Consequently, this model is not suitable for a transient simulation or failure analysis; however J-A hysteresis model would ignore this restraint.
At last, taking single-phase ground fault accident analysis of Mailiao power supply system as an example, it proves the accessibility of core J-A hysteresis model. In the entire power system simulation circuit, hysteresis features of power transformer are described by J-A hysteresis model. Initiate a comparison for simulated waveform and transient waveform recorded waveform, and then it leads to a conclusion that using J-A hysteresis model to analyze core hysteresis features of transformer is most applicable and exact.
Abstaract (Chinese) i
Abstaract (English) iii
Acknowledgement vi
Contents vii
Figure Captions ix
Table Captions xiii

Chapter 1 Introduction 1
1.1 Research Motives and Purposes 1
1.2 Major Contributions 3
1.3 Introductory Discussions 4
Chapter 2 Ferro-Magnetic Material and Its Magnetization Character 6
2.1 Magnetization 6
2.2 Magnetic Domains 9
2.3 Domain Wall 16
2.4 Hard Magnetic and Soft Magnetic Materials 18
Chapter 3 Magnetization Model of Ferro-Magnetic Material 22
3.1 Stoner-Wolhfarth (S-W) Model 23
3.2 Jiles-Atherton (J-A) Model 26
3.3 Globus Model 31
3.4 Preisach Model 36
Chapter 4 Parameter Optimization of J-A Hysteresis Model 44
4.1 Parameter Sensitivity Analysis of J-A Hysteresis Model 44
4.2 Generic Algorithm with Penalty Function 52
4.3 Estimation of the Optimal Parameter Values of Core J-A Hysteresis Model 55
4.4 Result and Evidence 56
Chapter 5 Foundation of Core J-A Hysteresis Model 60
5.1 Establishment of Core J-A Hysteresis Model of CT 61
5.2 Transient Testing for Core J-A Hysteresis Model of CT 62
5.3 Case Study - Accidental Simulation Analysis of Mailiao Power Supply System 69
5.3.1 Measuring Data Resolution 72
5.3.2 Simulation and Result Analysis 78
Chapter 6 Conclusions 88
References 90
Publications 94
Biography 97
[1] C.M. Arturi, "Transient Simulation And Analysis of a Five-Limb Generator Step-Up Transformer Following an Out-Of-Phase Synchronization," IEEE Transactions on Power Delivery, Vol. 6, No. 1, pp. 196-207, Jan 1991.
[2] J.G. Frame, N. Mohan, and T. Liu, "Hysteresis Modeling in an Electromagnetic Transients Program," IEEE Transactions on PAS, Vol. PAS-101, No. 9, pp. 3403-3411, Sep 1982.
[3] M.R. Iravani, et al., “Modeling and Analysis Guidelines for Slow Transients III. The Study of Ferroresonance,” IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 255-266, Jan 2000.
[4] D.C. Jiles and D.L. Atherton, “Theory of Ferromagnetic Hysteresis,” in Journal of Magnetism and Magnetic Materials:Elsevier Science Publishers, Vol. 61, pp. 48-60, Jan 1986.
[5] D. L. Atherton and J. R. Beattie, “A mean field Stoner-Wohlfarth hysteresis model,” IEEE Transactions on Magnetics, vol. 26, pp. 3059-3061, Nov 1990.
[6] D. C. Jiles and J. B. Thoelks, “Theory of Ferromagnetic Hysteresis,” IEEE Transactions on Magnetics, Vol. 25, No. 5, pp. 3928-3930, 1989.
[7] D. C. Jiles and D. L. Atherton, “Ferromagnetic Hysteresis,” IEEE Transactions on Magnetics, Vol. MAG-19, pp. 2183-2185, 1983.
[8] D. C. Jiles, “Theory of ferromagnetic hysteresis,” IEEE Transactions on Applied Physicals, vol. 55, no. 6, pp. 2115-2120, 1984.
[9] K. H. Carpenter, “A differential equation approach to minor loops in the Jiles-Atherton hysteresis model,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 4404-4405, Nov 1991.
[10] D. C. Jiles, “A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis,” IEEE Transactions on Magnetics, vol. 28, no. 5, pp. 2602-2604, 1992.
[11] D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis,” IEEE Transactions on Magnetics, vol. 28, pp. 27-35, Jan 1992.
[12] A. Globus, P. Duplex, and M. Guyot, “Determination of initial magnetization curve from crystallites size and effective anisotropy field,” IEEE Transactions on Magnetics, vol. MAG 7, pp. 617-622, May 1971.
[13] M. Le Floc’h, “Analytical expression of the initial magnetization curve in soft magnetic polycrystalline materials,” IEEE Transactions on Applied Physicals, vol. 67, no. 1, pp. 405-408, 1990.
[14] R. M. Del Vecchio, “An efficient procedure for modeling complex hysteresis process in ferromagnetic materials,” IEEE Transactions on Magnetics, vol. MAG 16, pp. 809-811, Sep 1980.
[15] F. Vadja and E. Della Torre, “Measurement of output dependent Preisach functions,” IEEE Transactions on Magnetics, vol. 27, pp. 4757-4762, Nov 1991.
[16] D. Pescetti, “Some remarks on Preisach modeling,” IEEE Transactions on Applied Physicals, vol. 69, no. 8, pp. 4605-607, 1991.
[17] I. D. Mayergoyz, “The classical Preisach model of hysteresis and reversibility,” IEEE Transactions on Applied Physicals, vol. 69, no. 8, pp. 4602-4604, 1991.
[18] D. L. Atherton, B. Szpunar, and J. A. Szpunar, “A new approach to Preisach diagrams,” IEEE Transactions on Magnetics, vol. MAG 23, pp. 1856-1865, May 1987.
[19] G. Bertotti, “General properties of power losses in ferromagnetic materials,” IEEE Transactions on Magnetics, vol. MAG 24, pp. 621-632, Jan 1986.
[20] J. Oti and E. Della Torre, “A vector moving model of both reversible and irreversible magnetization processes,” IEEE Transactions on Applied Physicals., vol. 67, no. 9, pp. 5364-5366, 1990.
[21] Stephen Prigozy, “PSPICE Computer Modeling of Hysteresis Effects,” IEEE Transactions on Education, Vol. 36, pp. 2-5, Feb 1993.
[22] N. Schmidt and H. Guldner, “A Simple Method to Determine Dynamic Hysteresis Loops of Soft Magnetic Materials,” IEEE Transactions on Magnetics, Vol. 32, pp. 489-496, March 1996.
[23] Peter R. Wilison, J.Neil Ross, and Andrew D. Brown, “Optimizing the Jiles–Atherton Model of Hysteresis by a Genetic Algorithm,” IEEE Transactions on Magnetics, Vol. 37, No.2, pp.989-993, May 1999.
[24] Mistsuo Gen and Runwei Cheng, Genetic Algorithms and Engineering Design, John Wiley & Sons, New York, 1997.
[25] J. H. B. Deane, “Modeling of a Chaotic Circuit Containing a Saturating/Hysteretic Inductor,” Electronic Letter, Vol. 29, pp. 957-958, 1993.
[26] J. H. B. Deane, “Modeling the Dynamics of Nonlinear Inductor Circuits,” IEEE Transactions on Magnetics, Vol. 30, pp. 2795-2801, 1994.
[27] D. C. Jiles, J. B. Thoelke and M. K. Devine, “Numerical determination of Hysteresis Parameters for the Modeling of Magnetic Properties Using the Theory of Ferromagnetic Hysteresis,” IEEE Transactions on Magnetics, Vol. 28, pp. 27-35, Jan 1992.
[28] Dieter Lederer, Hajime Igarashit, Arnulf Kost and Toshihisa Honmat, “On the Parameter Identification and Application of the Jiles-Atherton Hysteresis Model for Numerical Modelling of Measured Characteristics,” IEEE Transactions on Magnetics, Vol. 35, pp. 1211-1214, May 1999.
[29] CaishengWang, M. Hashem Nehrir, and Steven R. Shaw, “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits,” IEEE Transactions on Energy Conversion, Vol. 20, No. 2, pp. 442-451, June 2005.
[30] Alessandro Salvini and Francesco Riganti Fulginei, “Genetic Algorithms and Neural Networks Generalizing the Jiles-Atherton Model of Static Hysteresis for Dynamic Loops,” IEEE Transactions on Magnetics, Vol. 38, No. 2, pp. 873-876, March 2002.
[31] Shuying Cao, Boweng Wang, Rongge Yan, Wenmei Huang, and Qingxin Yang, “Optimization of Hysteresis Parameters for the Jiles-Atherton Model Using a Genetic Algorithm,” IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, pp. 1157-1160, June 2004.
[32] J. V. Leite, S. L. Avila, N. J. Batistela, W. P. Carpes, Jr., N. Sadowski, P. Kuo-Peng, and J. P. A. Bastos, “Real Coded Genetic Algorithm for Jiles-Atherton Model Parameters Identification,” IEEE Transactions on Magnetics, Vol. 40, No. 2, pp. 888-, March 2004.
[33] J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, and J. P. A. Bastos, “The Inverse Jiles-Atherton Model Parameters Identification,” IEEE Transactions on Magnetics, Vol. 39, No. 3, pp. 1397-1400, May 2003.
[34] David Jiles, Introduction to Magnetism and Magnetic Materials, Second Edition, in Chapman & Hall Press, 1998.
[35] David Jiles, Introduction to the Electronic Properties of Materials, in Chapman & Hall Press, 1994.
[36] S. T, Tsai, Optimizing the Jiles–Atherton Model Parameters of Current Transformer by Genetic Algorithm, in Master Thesis, Department of Electrical Engineering, Feng Chia University, June 2005.
[37] H. W. Chang, A Study of the Ferromagnetic Transient Characteristic for Railway Transportation System, in Master Thesis, Department of Electrical Engineering, Feng Chia University, June 2004.
[38] Y. S. Die, Influence of the Representation of Transformer Core Configuration during Unbalanced Operations, in Master Thesis, Department of Electrical Engineering, Feng Chia University, June 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔