跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李孟哲
研究生(外文):Meng-Che Lee
論文名稱:雙旋轉控制圓柱對主要圓柱流場阻力之效應
論文名稱(外文):Study of Drag Effects of Dual Controlling Circular Columns to the Flow Field of the Principle Column
指導教授:周德明
指導教授(外文):Der-Ming Chou
學位類別:碩士
校院名稱:遠東技術學院
系所名稱:機械研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:92
語文別:中文
論文頁數:130
中文關鍵詞:邊界層控制尾流控制旋轉控制圓柱
外文關鍵詞:boundary layer controltrail controlrotating controlling columnsMSBC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
  本文利用數值方法研究二維流場中兩旋轉控制圓柱對於主圓柱本體的阻力影響。在旋轉控制圓柱無因次轉速 =0至5的情形下,改變雷諾數(Re= 、 、 )、圓柱直徑比( =5、10、20)、圓柱間隙( =0 、0.01 、0.05 、0.075 、0.1 )、入流攻角( =0 、15 、30 、45 、60 、75 、90 )、圓柱間夾角( =30 、60 、-30 、-60 )等參數,進行數值模擬分析。
  在動量注入之下,主圓柱的阻力係數跟尾流場會隨著無因次轉速的增加而逐漸降低及縮小。在圓柱直徑比方面,較大的旋轉控制圓柱於高無因次轉速之下會有較佳的尾流場控制能力。而圓柱之間的間隙若是過大,旋轉控制圓柱動量注入的效果將會受到限制。隨著入流攻角的逐漸增加,在 的範圍之內尾流場將會逐漸縮小,當 之後,並沒有明顯增加控制尾流場的能力,當入流攻角位於30 時注入動量的效率最佳。在改變圓柱間夾角方面,旋轉控制圓柱放置於主圓柱的後半部於-30 的位置時,有著較佳的邊界層延遲分離能力。
  結果顯示,在鈍體周圍適當使用旋轉控制圓柱可有效改善阻力、流場尾流結構。可實際應用於高樓、橋樑、交通運輸工具等。
This paper presents a study of drag effects of dual controlling circular columns on the principle column in a two dimensional flow field. The controlling columns have a non-dimensional rotating speed ranging from 0 to 5. Numerical analyses are employed in associated with some selected parameters in various settings. The varied parameters include the Reynolds Number with values of , and , column diametrical ratio set at =5, 10, and 20, column gap at 0 , 0.01 , 0.05 , 0.075 , and 0.1 , in-flow camber at = , , , , , , and , and angle between columns at = , , , and .
With the input momentum, the drag coefficient and the trailing flow of the principle circular column reduces gradually and diminishes in the end. Considering the diameter of the column, the larger controlling column reveals a better control ability on the trailing flow in higher end of the non-dimensional rotating speed range. Too big a gap will limit the input momentum by the rotating controlling columns. In the range of 0 , the trailing flow becomes smaller as the in-flow camber becomes larger. On the other hand in the range of , the trailing flow is barely influenced。The results also show that a better capability is obtained to delay the boundary separation when the rotating controlling columns are placed in the rear of the principle column.
The results show that by using rotating controlling columns around the bluff body properly, drag force and trailing flow can be improved effectively, it can apply to skyscraper, bridge and transportation.
中文摘要..................................................................................................... I
英文摘要.................................................................................................... II
誌謝.......................................................................................................... IV
目錄........................................................................................................... V
表目錄................................................................................................... VIII
圖目錄...................................................................................................... IX
符號說明............................................................................................ XVIII
第一章 緒論.......................................................................................... 1
1.1 前言.......................................................................................... 1
1.2 文獻回顧.................................................................................. 2
1.3 研究目的與動機...................................................................... 6
第二章 研究方法.................................................................................. 8
2.1 系統模型.................................................................................. 8
2.2 基本假設.................................................................................. 8
2.3 統御方程式.............................................................................. 9
2.4 紊流模式................................................................................ 10
2.5 阻力的形成............................................................................ 12
2.6 邊界條件................................................................................ 13
2.7 起始條件................................................................................ 14
2.8 參數定義................................................................................ 14
2.9 參數規劃................................................................................ 15
2.10 表面壓力係數........................................................................ 16
第三章 數值方法................................................................................ 17
3.1 網格系統................................................................................ 18
3.2 收斂條件................................................................................ 19
3.3 格點測試................................................................................ 20
3.4 上下邊界收斂測試................................................................ 20
3.5 數值模擬流程........................................................................ 21
第四章 結果與討論............................................................................ 22
4.1 單圓柱的表面壓力係數與平均阻力係數............................ 23
4.2 改變雷諾數對於主圓柱平均阻力係數的影響.................... 23
4.3 改變圓柱直徑比對於主圓柱平均阻力係數的影響............ 25
4.4 改變圓柱間隙對於主圓柱平均阻力係數的影響................ 27
4.5 改變入流攻角對於主圓柱平均阻力係數的影響................ 28
4.6 改變圓柱間夾角對於主圓柱平均阻力係數的影響............ 30
第五章 結論與建議............................................................................ 33
5.1 結論........................................................................................ 33
5.2 建議........................................................................................ 36
參考文獻 .............................................................................................. 126
1.Zdravkovich, M. M., Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding. Journal of Wind Engineering and Industrial Aero- dynamics, Vol. 7, pp. 145-189, 1981.
2.Griffin, O. M. and Hall, M. S., Review-Vortex Shedding Lock-on and Flow Control in Bluff Body Wakes, ASME Journal of Fluids Engineering, Vol. 113, pp. 526-537, 1991.
3.Williamson, C. H. K. and Roshko, A., Vortex Formation in the Wake of an Oscillating Cylinder, Journal of Fluids and Structures, Vol.2, pp. 355-381, 1988.
4.Ongoren, A. and Rockwell, D., Flow Structure from an Oscillating Cylinder. Part 1. Mechanisms of Phase Shift and Recovery in the Near Wake, Journal of Fluid Mechanics, Vol. 191, pp. 197-223, 1988.
5.Ongoren, A. and Rockwell, D., Flow Structure from an Oscillating Cylinder. Part 2. Mode Competition in the Near Wake, Journal of Fluid Mechanics, Vol. 191, pp. 225-245, 1988.
6.Lecointe, Y., Piquet, J., and Plantec, J., Flow Structure in the Wake of an Oscillating Cylinder, In Forum on Unsteady Flow Separation (ed. K. N. Ghia), New York: ASME, FED-52, pp. 147-157, 1987.
7.Mittal, S. and Tezduyar, T. E., A Finite Element Study of Incompressible Flows Past Oscillating Cylinders and Airfoils, International Journal for Numerical Methods in Fluids, Vol. 15, pp. 1073-1118, 1992.
8.Mittle, S. and Kumar, V., Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers, International Journal for Numerical Methods in Fluids, Vol. 31, pp. 1087-1120, 1999.
9.Tokumaru, P. T. and Dimotakis, P. E., Rotary Oscillation Control of Cylinder Wake, Journal of Fluid Mechanics, Vol. 224, pp. 77-90, 1991.
10.Tokumaru, P. T. and Dimotakis, P. E., The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow, Journal of Fluid Mechanics, Vol. 255, pp. 1-10, 1993.
11.Strykowski, P. J. and Sreenivasan, K. R., On the Formation and Suppression of Vortex and ‘Shedding’ at Low Reynolds Numbers, Journal of Fluid Mechanics, Vol. 218, pp. 71-107, 1990.
12.Mittal, S. and Raghuvanshi, A., Control of Vortex Shedding Behind Circular Cylinder for Flow at Low Reynolds Numbers, International Journal for Numerical Methods in Fluids (to appear), 2000.
13.Gad-El-Hak, M. and Bushnell, D. M., Separation Control: Review, ASME Journal of Fluids Engineering, Vol. 113, pp. 5-29,1991.
14.Goldstein, S., Modern Developments in Fluid Dynamics, Oxford: Clarendon Press, 1938.
15.Mittla, S., On the Performance of High Aspect-Ratio Elements for Incompressible Flows, Computer Methods in Applied Mechanics and Engineering, Vol. 188, pp. 269-287, 2000.
16.Mittal, S., Reduction of Unsteady Forces on Bluff Bodies Using Rotating Control Cylinders, In IUTAM-Symposium on Mechanics of Passive and Active Flow Control, Dordrecht: Kluwer Academic Publishers, 2000.
17.Modi, V. J., Shih, E., Ying, B. and Yokomizo, T., Drag Reduction of Bluff Bodies Through Momentum Injection, Journal of Aircraft, Vol. 29, pp. 429-436, 1992.
18.Modi, V. J., Fernando, M. S. U. K. and Yokomizo, T., Moving Surface Boundary-Layer Control : Studies with Bluff Bodies and Applications, AIAA Journal, Vol. 29, pp. 1400-1406, 1991.
19.Modi, V. J., Mokhtarian, F. and Fernando, M. S. U. K., Moving Surface Boundary-Layer Control as Applied to Two-Dimensional Airfoils, Journal of Aircraft, Vol. 28, pp. 104-112, 1991.
20.Modi, V. J., Shih, E., Ying, B. & Yokomizo, T. Drag Reduction of Bluff Bodies Through Momentum Injection, Journal of Aircraft, Vol. 29, pp. 429-436, 1992.
21.Munshi, S. R., Modi, V. J. and Yokomizo, T., Aerodynamics and Ddynamics of Rrectangular Prisms with Momentum Injection, Journal of Fluids and Structures, Vol. 11, pp. 873-892, 1997.
22.Munshi, S. R., Modi, V. J. and Yokomizo, T., Fluid Dynamics of Flat Rrectangular Prisms in the Presence of Moving Surface Boundary-Layer Control, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 79, pp. 37-60, 1999.
23.Munshi, S. R., Modi, V. J.and Yokomizo, T. Bluff Body Fluids Ddynamics of D-Section with Moving Surface Boundary-Layer Control, In Proceedings of the Symposium Flow-Induced Vibration, ASME/JSME PVP Conference ,Honolulu, Hawaii, U.S.A., 1995.
24.Modi, V. J., Moving Surface Boundary-Layer Control : A Review, Journal of Fluids and Structure, Vol. 11, pp. 627-663, 1997.
25.Chew, Y. T., Pan, L. S. and Lee, T. S., Numerical Ssimulation of the Eeffect of a Moving Wall on Separation of Flow Past a Symmetrical Aerofoil, Proceedings of the Institution of Mechanical Engineers, Vol. 212, pp. 69-77, 1998.
26.Tokumaru, P. T. and dimotakis, P. E., Rotary Oscillation Control of Cylinder Wake, Journal of Fluid Mechanics, Vol. 224, pp. 77-90, 1991.
27.Tokumaru, P. T. and dimotakis, P. E., The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow, Journal of Fluid Mechanics, Vol. 255, pp. 1-10, 1993.
28Mittal, S., Control of Flow Past Bluff Bodies Using Rotating Control Cylinders, Journal of Fluid and Structures, Vol. 15, pp. 291-326, 2001.
29.Munson, B. R. Young, D. F. and Okishi, T. H., Fundamentals of Fluid Mechanics, pp. 479-483, 1998.
30.COSMOSFloworks fundamentals, 2006.
31.Hermann Schlichting, Boundary Layer Theory I, McGRAW-HILL Book Company, New York, pp.21-29, 1978.
32.杜鳳棋, 流體力學(下), 高立圖書, 台灣, pp.672-673, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top