跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉文正
研究生(外文):Wun-Jheng Liou
論文名稱:硼氮化合物(Ammoniaborane)之產氫效益研究
論文名稱(外文):The Study of Hydrogen Generation From Ammonia Borane
指導教授:李選能
指導教授(外文):Sung- Nung Lee
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:化學儲氫材料NH3BH3熱分析分子篩磺酸根分子篩釋氫反應
外文關鍵詞:Chemical hydrogen-storage materialammonia boranethermal decompositionmesoporous materialsulfonic-functionalized SBA-15 materialcatalytic capabilities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
化學儲氫材料(ammonia borane,NH3BH3),為一在室溫與常壓下相當穩定、無毒性的固態物質,融點在112~114℃。當在135℃至400℃間加熱,可產生大量氫氣,在一系列的分解反應下,可放出約等於NH3BH3原始質量20%的氫氣。
研究工作從合成NH3BH3開始,嘗試各種方法以提高產率。以1H-NMR鑑定NH3BH3結構;及IR判別NH3BH3官能基之變化;以及用DSC及TGA對其NH3BH3做熱分析探討以及NH3BH3釋氫的特性,採用不同熱解條件及不同催化劑,以及在水溶液的條件下進行評估。
在催化劑方面是分為兩部分(1)分子篩(SBA-15);(2)磺酸根分子篩(SBA-15-Pr-SO3H)。分子篩部分,是將NH3BH3注入分子篩,利用DSC對NH3BH3/SBA-15系列進行熱分析探討。磺酸根分子篩部分,合成不同比例磺酸根分子篩,將磺酸根分子篩加入NH3BH3溶液,使用GC分析磺酸根分子篩催化NH3BH3水溶液之釋氫反應差異。
Chemical hydrogen-storage material(ammonia borane,NH3BH3),which is a white crystalline solid at ambient temperature and atmospheric pressure and with a the melting temperature of 112-l14°C. When heating NH3BH3 , H2 gas liberates in a sequence of reactions between 137 and 400 ◦C, the quantity of H2 evolved can reach 20 wt.% of its initial mass.
This study start with the synthesis of NH3BH3 . Different methods has been tried to enhance the yield of NH3BH3 . The structure and functional group are determined by 1H-NMR and IR Spectrometer and Gas Chromatography. The thermal decomposition of NH3BH3 was studied by thermogravimetry analysis (TGA), differential scanning calorimetry (DSC). The pyrolysis of ammonia borane are studied by either in the non-isothermal or isothermal modes, and different catalysts are used .
Two catalytic systems are employed, which includes a mesoporous material , SBA-15 and a sulfonic-functionalized SBA-15 material(SBA-15-pr-SO3H).In the former case, NH3BH3 is infused into SBA-15, and DSC is used to monitoring the decomposition reaction of NH3BH3. In the latter, catalyst SBA-15-pr-SO3H is added to NH3BH3 aqueous solution, and the H2 evolved is analyzed by GC. Besides, SBA-15-pr-SO3H with different molar ratios sulfonic acid are synthesis, and their catalytic capabilities are investigated.
中文摘要 ...................................................I
Abstract .................................................II
緒論 .....................................................1
1-1儲氫材料背景 ...........................................2
1-2化學儲氫材料之介紹(NH3BH3).............................4
1-3 Ammonia borane (NH3BH3)各類產氫方法之比較 ............6
1-4研究目的 ..............................................12
1-4-1第一部份(NH3BH3化學儲氫材料之合成及其產氫效益)..........12
1-4-2第二部分(NH3BH3/SBA-15系列產氫物之產氫效益)...........13
1-4-3第三部分(磺酸根分子篩對於NH3BH3 水溶液之釋氫效益).......14
第二章 理論基礎 ...........................................15
2-1 研究架構 .............................................15
2-1-1 Ammonia borane合成部分 .............................15
2-1-2 NH3BH3釋氫部分 .....................................16
2-2 分子篩(SBA-15)背景 ..................................17
2-3 磺酸根分子篩(SBA-15-pr-SO3H)背景 .....................20
第三章、實驗部分 ...........................................21
3-1 儀器部分 ..............................................21
3-2 藥品部分 ..............................................22
3-3 合成部分 ..............................................24
3-3-1 NH3BH3合成與純化方法 .................................24
3-3-2 NH3BH3合成放大與改良 .................................25
3-3-3 分子篩合成 ...........................................27
3-3-4 磺酸根分子篩合成 ......................................29
3-3-5 移除界面活性劑方法 ....................................30
3-4 NH3BH3鑑定部分 .........................................31
3-5 分子篩(SBA-15)部分 ....................................33
3-6 磺酸根分子篩鑑定部分 .....................................37
第四章、結果與討論 ...........................................39
4-1 NH3BH3合成部分 ..........................................39
4-1-1 NH3BH3小劑量合成 ......................................39
4-1-2 溫度及時間對產率的影響 ..................................39
4-1-3 溶劑及反應物比例之影響 ..................................40
4-2 NH3BH3部分 ..............................................41
4-2-1 NH3BH3之1H-NMR光譜 .....................................41
4-2-2 NH3BH3之FT-IR光譜 ......................................44
4-2-3 NH3BH3熱分解研究-DSC分析不同升溫速率比較 .................46
4-2-4 NH3BH3熱分解研究-DSC定溫/變溫步驟分析 ....................48
4-2-5 NH3BH3熱分解研究-TGA分析 ................................52
4-3 分子篩(SBA-15)部分 .......................................55
4-3-1 FT-IR光譜 ...............................................55
4-3-2 SBA-15-熱分析(TGA).....................................56
4-3-3 SBA-15形態與結構探討(SEM與TEM) ..........................59
4-3-4 SBA-15與NH3BH3/SBA-15系列 BET分析 ........................62
4-3-5 NH3BH3/SBA-15與純NH3BH3-熱分析比較(DSC) ................67
4-4 磺酸根分子篩(SBA-15-pr-SO3H)部分 ..........................70
4-4-1 FT-IR光譜 ...............................................70
4-4-2 磺酸根分子篩-熱分析(TGA).................................71
4-4-3 磺酸根分子篩形態與結構探討(SEM)............................72
4-4-4 GC分析磺酸根分子篩對NH3BH3水溶液之釋氫反應 ...................78
第五章、結論 .....................................................83
第六章、參考資料 .................................................86


圖目錄
Figure 1 週期表...............................................3
Figure 2 SEM圖 ...............................................7
Figure 3 TEM圖 ...............................................7
Figure 4 ammonia borane熱程控脫附分析圖 ........................7
Figure 5 活化能計算圖 ..........................................8
Figure 6 過渡金屬催化NH3BH3水溶液釋氫之莫耳數與時間關係圖 .........10
Figure 7 陽離子樹脂與沸石催化NH3BH3水溶液釋氫之莫耳數與時間關係圖 ...10
Figure 8 非貴金屬材料催化NH3BH3 水溶液釋氫之莫耳數與時間關係圖 ......11
Figure 9 NH3BH3熱裂解過程圖 .....................................16
Figure 10 Pluronic123 相圖 .....................................18
Figure 11 磺酸根分子篩合成圖 .....................................20
Figure 12 分子篩(SBA-15)之合成流程圖 ............................28
Figure 13 NH3BH3/SBA-15產氫物之製備流程圖 ........................28
Figure 14 磺酸根分子篩(SBA-15-pr-SO3H)合成流程圖 ................30
Figure 15 GC分析流程圖 ...........................................38
Figure 16 d8-THF NMR光譜圖 .......................................42
Figure 17 NH3BH3標準樣品之NMR光譜圖(d8-THF) .......................43
Figure 18 純化前之NH3BH3 NMR光譜圖(d8-THF) ........................43
Figure 19 純化後之NH3BH3 NMR光譜圖(d8-THF) ........................44
Figure 20 NH3BH3 FT-IR光譜圖 .....................................45
Figure 21 polymeric aminoborane {(NH2BH2)x } FT-IR光譜圖 .........45
Figure 22 不同升溫速率比較圖 .......................................46
Figure 23 NH3BH3熱分解過程圖 ......................................47
Figure 24 微量樣品的不同升溫速率比較之DSC熱分析圖 ....................47
Figure 25 NH3BH3標準樣品各定溫即變溫之DSC熱分析圖 ...................49
Figure 26 NH3BH3標準樣品定溫分析之DSC熱分析圖 .......................49
Figure 27 NH3BH3標準樣品定溫加變溫分析之DSC熱分析圖 ..................50
Figure 28 NH3BH3各定溫及變溫分析之DSC熱分析圖 .......................50
Figure 29 NH3BH3定溫分析之DSC熱分析圖 ..............................51
Figure 30 NH3BH3變溫分析之DSC熱分析圖 ..............................51
Figure 31 NH3BH3 標準樣品以N2為載氣之TGA熱分析圖 ....................53
Figure 32 NH3BH3標準樣品以Ar為載氣之TGA熱分析圖 ......................53
Figure 33 NH3BH3產物以N2為載氣之TGA熱分析圖 ..........................54
Figure 34 NH3BH3產物以 Ar為載氣之TGA熱分析圖 .........................54
Figure 35 不同熱處理之分子篩FT-IR光譜圖 ..............................55
Figure 36 SBA-15-80未燒結與已燒結之TGA熱分析圖 .......................57
Figure 37 SBA-15-90未燒結與已燒結之TGA熱分析圖 .......................57
Figure 38 SBA-15-100未燒結與已燒結之TGA熱分析圖 ......................58
Figure 39 SBA-15-80 10000倍之SEM圖 .................................59
Figure 40 SBA-15-90 10000倍之SEM圖 .................................60
Figure 41 SBA-15-100 10000倍之SEM圖 ................................60
Figure 42 SBA-15-80 50nm倍率之TEM圖 ................................61
Figure 43 SBA-15-90 50nm倍率之TEM圖 ................................61
Figure 44 SBA-15-100 50nm倍率之TEM圖 ...............................62
Figure 45 SBA-15-80 氮氣等溫吸/脫附曲線與孔徑分佈圖 ...................63
Figure 46 NH3BH3/SBA-15-80氮氣等溫吸/脫附曲線圖 ......................64
Figure 47 SBA-15-90 氮氣等溫吸/脫附曲線與孔徑分佈圖 ...................64
Figure 48 NH3BH3/SBA-15-90氮氣等溫吸/脫附曲線圖 ......................65
Figure 49 SBA-15-100 氮氣等溫吸/脫附曲線與孔徑分佈圖 ..................65
Figure 50 NH3BH3/SBA-15-100氮氣等溫吸/脫附曲線圖 .....................66
Figure 51 NH3BH3產物不同升溫速率比較之DSC圖 ..........................68
Figure 52 NH3BH3/SBA-15-80不同升溫速率比較之DSC熱分析圖 ..............68
Figure 53 NH3BH3/SBA-15-90不同升溫速率比較之DSC熱分析圖 ..............69
Figure 54 NH3BH3/SBA-15-100不同升溫速率比較之DSC熱分析圖 .............69
Figure 55 磺酸根分子篩 FT-IR光譜圖 ..................................70
Figure 56 磺酸根分子篩熱之TGA熱分析圖 ................................72
Figure 57 SBA-15-pr-SO3H-a 5000倍之SEM圖 ...........................73
Figure 58 SBA-15-pr-SO3H-a 10000倍之SEM圖 ..........................73
Figure 59 SBA-15-pr-SO3H-b 5000倍之SEM圖 ...........................74
Figure 60 SBA-15-pr-SO3H-b 10000倍之SEM圖 ..........................74
Figure 61 SBA-15-pr-SO3H-c 5000倍之SEM圖 ...........................75
Figure 62 SBA-15-pr-SO3H-c 10000倍之SEM圖 ..........................75
Figure 63 SBA-15-pr-SO3H-e 5000倍之SEM圖 ...........................76
Figure 64 SBA-15-pr-SO3H-e 10000倍之SEM圖 ..........................76
Figure 65文獻中磺酸根分子篩之SEM圖 ...................................77
Figure 66為各比例催化劑對於NH3BH3水溶液之釋氫量與時間關係圖(1)SBA-15-pr-SO3H-a;(2)SBA-15-pr-SO3H-b;(3)SBA-15-pr-SO3H-c;(4)SBA-15-pr-SO3H-e;(5)SBA-15-pr-SO3H-C ......................................80
figure 67為各比例催化劑對於NH3BH3水溶液之釋氫莫耳與時間關係圖(1)SBA-15-pr-SO3H-a;(2)SBA-15-pr-SO3H-b;(3)SBA-15-pr-SO3H-c;(4)SBA-15-pr-SO3H-e;(5)SBA-15-pr-SO3H-C ......................................81
Figure 68各比例催化劑對於NH3BH3水溶液之釋氫莫耳數 .....................82

表目錄
Table 1 主要儲氫材料關鍵性質比較 .....................................4
Table 2 NH3BH3特性表 ...............................................5
Table 3 NH3BH3溶解性質 .............................................5
Table 4 各類催化劑整理 ..............................................9
Table 5 NH3(g)價格比較 ............................................15
Table 6 MBH4的價格比較 ............................................15
Table 7 SBA-15特性表 .............................................17
Table 8 NH3BH3在各溶劑之溶解度 ....................................25
Table 9 NH3BH3產率 ...............................................39
Table 10 不同合成溫度之NH3BH3產率 ..................................40
Table 11 溶劑及反應物比例之影響 .....................................41
Table 12 NH3BH3 FT-IR光譜整理表 ...................................44
Table 13 SBA-15 FT-IR光譜整理表 ..................................55
Table 14 BET分析結果 ..............................................66
Table 15 磺酸根分子篩 FT-IR光譜整理表 ...............................71
Table 16 不同比例催化劑 ............................................78
Table 17 各比例催化劑對於NH3BH3(aq)釋氫量與時間之整理 ...............82
(1)US Department of Energy, Office of Basic Energy Sciences,BasicResearch Needs for the Hydrogen Economy, US DOE,Washington, DC,2004. Available at http://www.sc.doe.gov/bes/hydrogen.pdf.
(2)W. Grochala, P.P. Edwards, Chem. Rev. 104 (2004) 1283.
(3)J. Huot, J. F. Pelletier, G. Liang, M. Sutton, R. Schultz, J. Alloys Compd. 330–332, (2002), 727 .
(4)P. Chen, Z. Xiong, J. Luo, J. Lin, K. L. Tan, Nature.420,(2002), 302.
(5)R. E. Davis, A. Saba, D. R. Cosper,Bloomer, J. A. Inorg. Chem. 3, (1964) , 460.
(6)L. Schlapbach, A. Zuttel, Nature. 414,(2001), 353.
(7)D. J. Browning, M. L. Gerrard, J. B. Lakeman, I. M. Mellor, R. J.Mortimer, M. C. Turpin, Nano Lett. 2,(2002),201.
(8)A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S.Bethune, M. J. Heben, Nature .386,(1997), 377.
(9)G. B. Tibbetts, G. P. Meisner, C. H. Olk, Carbon. 39,(2001), 2291.
(10)S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 77 (1955) 6084.
(11)S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 80 (1958) 8.
(12)A. T. Raissi, “Hydrogen from ammonia and ammonia-borane complex for fuel cell application” Proceedings 2002 DOE Hydrogen Program Review.
(13)F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Ro¨ßler, G. Leitner,Thermochimica Acta 391 (2002) 159
(14)H.C. Kelly, V.B. Marriott, Inorg. Chem. 18 (1979) 2875.
(15)A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S.Smith, B.D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew.Chem. Int. Ed. 44 (2005) 3578.
(16)Y. Shin, J. Liu, L.-Q.Wang, Z. Nie,W. D. Samuels, G. E. Fryxell,G. J. Exarhos, Angew.Chem. Int. Ed. 39,(2000), 2702.
(17) D. Zhao, J. Feng, Q. Huo, N. Melosh,G. H .Fredrickson, Chmelka, B. F. Stucky, G. D. Science,279(1998), 548.
(18)M. Chandra, Q. Xu, J. Power Sources 156 (2006) 190.
(19)M. Chandra, Q. Xu, J. Power Sources 159 (2006) 855.
(20)M. Chandra, Q. Xu, J. Power Sources 163 (2006) 364.
(21)M.G. Hu, J.M. van Paaschen, R.A. Geanangel, J. Inorg. Nucl.Chem. 39 (1977) 2147.
(22)D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, and G. D. Stucky. Chem. Mater. 12,(2000), 2448.
(23)D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120,(1998), 6024.
(24)G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules,27 (1994) ,4145
(25)L. Saikia, D. Srinivas, P. Ratnasamy, Microporous and Mesoporous Materials. 2007 doi:10.1016/j.micromeso.2007.02.026
(26)S. Iijima, Nature. 354,(1991), 56.
(27)J. W. Mintmire, B. I. Dunlap, C. T. White , Phys. Rev. Lett. , 68(1992),631
(28)C. L. Gerry, W. L.Bevan, A. J. Merer, And N. P. C. Westwood, J. Mol. Spectrosc.110 (1985) 153-163
(29)G. Worf, Thermochimica Acta 343, 19(2000)
(30)J. Baumann, F. Baitalow, G. Wolf,Thermochimica Acta 430 (2005) 9–14
(31)D.P. Kim, K.T.Moon, J.G. Kho, J.Economy, C. Gervais, F. Babonneau, Polym. Adv. Technol. 10 (12) (1999) 702.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top