跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余佳儒
研究生(外文):Chia-Ju Yu
論文名稱:奈米膠囊化genistein之安定性及模擬系統中釋放速率之研究
論文名稱(外文):Studies on Stability and the Releasing Rate of Genistein-encapsulated Nanoparticles in a Simulated System
指導教授:陳烱堂
指導教授(外文):John Tung Chien
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:異黃酮膠體強度奈米顆粒熱安定性控制釋放
外文關鍵詞:isoflavonesgel strengthnanoparticlesthermal stabilitycontrolled release
相關次數:
  • 被引用被引用:2
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:256
  • 收藏至我的研究室書目清單書目收藏:0
異黃酮(genistein)具類似雌性激素生理功能,而且有抗菌與抗氧化效果。然而此異黃酮容易在熱加工中氧化裂解,尤其是高極性帶醣基之異黃酮容易在加工中流失,而降低其生理活性。研究藉由微乳化及複合團聚技術包覆genistein,並且製成耐胃酸與耐熱的奈米級膠囊(nanoparticles, NP),不但可保護此異黃酮免於受破壞,可在腸道中控制釋出(controlled release)。利用反應曲面法可評估鹼處理動物膠(alkali-treated gelatin, ATG)與κ-紅藻膠濃度比例對膠囊壁載體交互作用之影響。當ATG與κ-紅藻膠濃度分別為4%與1.5%時,混合膠體具有較高的視黏度及接近牛頓流體特性,亦即有較佳的混合膠體強度。Z-電位差分析得知,隨著膠體層數的增加,NP表面負電位差有顯著增加(p < 0.05)。動態光散射分析發現,包覆genistein之NP其總平均半徑為44.2 nm,此包含分散單顆NP及聚集NP等兩族群,其平均粒徑半徑分別為7.0 nm(佔72.1%)與140.1 nm(佔27.9%);前者以原子力顯微鏡觀察浮出膠體表面之單顆球形NP之直徑為25.2 nm。另外將包覆genistein之NP置於不同pH值中,總平均直徑為7.4-10.0 nm,雖然均無顯著差異(p > 0.05),但於pH 6.8及7.4有聚集之大粒徑族群。將NP分散於pH 6.0磷酸緩衝溶液中並於室溫放置1小時,熱穩定性可高達120℃;但NP在pH 7.4時,呈現熱不穩定。以高效能液相層析定量分析NP 中genistein之包覆率高達98.3±0.8%。NP於pH 6.0、6.8、與7.4模擬系統中的一級釋出速率常數,分別為0 h-1(r2 = 1.00)、0.080 h-1(r2 = 0.92)、與0.744 h-1(r2 = 0.94)。由此可發現於模擬腸道環境中NP可有效在腸道pH達到釋放genistein效果。
Isoflavones possess phytoestrogens physiological functions, as well as antibacterial and antioxidant effects. Thermal processing may lead to a decrease of above biological activities of isoflavones through oxidative degradation and loss of high-polarity glucoside isoflavones. Genistein was encapsulated in the acid- and heat-stable nanoparticles (NP) by using the techniques of microemulsion and complex coacervation in order to protect it from gastric acid degradation, and to carry out a controlled release in intestine. Response surface methodology was used to determine the optimal concentration ratio of wall materials of alkali-treated gelatin (ATG) and κ-carrageenan. As a result, at concentrations of 4% ATG and 1.5% κ-carrageenan, the mixed gel showed higher apparent viscosity and approached Newtonian fluid behavior, implying that the mixed gel had an optimal gel strength. Zeta-potential analysis indicated that surface negative charge of NP increased with an increase of gel layer (p < 0.05). Dynamic light scattering analysis showed that NP with an average particle radius of 44.2 nm consisted of two particle groups-dispersed single NP and aggregated NP, which had the average particle radii of 7.0 nm (72.1%) and 140.1 nm (27.9%), respectively. The dispersed single NP was sphere in shape with an average particle size of 25.2 nm in radius when measured by atomic force microscopy. The diameter of NP at different pH was not significantly different (p > 0.05), but aggregated NP was found at pH 6.8 and 7.4. Results of differential scanning calorimetry showed that thermal stability of NP was up to 120℃ for 1 hour storage in pH 6.0 phosphate buffer solution at room temperature. However, NP was unstable at pH 7.4. Encapsulation efficiency of genistein in NP was 98.3±0.8% when quantified by high-performance liquid chromatography. When NP was dispersed in a simulated fluid at pH 6.0, 6.8 and 7.4, the first-order controlled release rate constants of genistein were 0 h-1 (r2 = 1.00), 0.080 h-1 (r2 = 0.92), and 0.744 h-1 (r2 = 0.94), respectively. The above results further indicated that genistein-encapsulated NP would show an effective controlled release in intestine.
目 錄
頁次
第一章 緒言…………………………………………………………………1
第二章 文獻回顧……………………………………………………………3
ㄧ、異黃酮……………………………………………………………………3
(一)大豆與加工製品中異黃酮素的含量…………………………………6
(二)Genistein……………………………………………………………8
二、微乳液系統………………………………………………………………12
(一)界面活性劑……………………………………………………………12
(二)乳化液…………………………………………………………………16
(三)微乳化液………………………………………………………………17
(四)微乳化液的型態………………………………………………………18
(五)微乳化液的特性………………………………………………………20
(六)微乳化液的熱力學穩定性……………………………………………23
(七)微乳化液之應用………………………………………………………24
三、微膠囊……………………………………………………………………27
(一)多層膜的效用…………………………………………………………28
(二)包覆物質對氧化安定性的影響………………………………………30
(三)微膠囊化之應用………………………………………………………31
第三章 材料與方法…………………………………………………………36
一、實驗材料…………………………………………………………………36
二、儀器設備…………………………………………………………………37
三、樣品製備…………………………………………………………………39
(一)動物膠之鹼處理………………………………………………………39
(二)混合膠體之製備………………………………………………………39
(三)奈米膠囊的配製………………………………………………………40
四、分析方法…………………………………………………………………42
(一)流變性分析……………………………………………………………42
(二)顆粒大小分析…………………………………………………………42
(三)表面電位差……………………………………………………………43
(四)示差掃描熱分析儀……………………………………………………43
(五)Genistein之定量……………………………………………………44
(六)NP中Genistein之包覆率……………………………………………45
(七)NP中Genistein之釋放率……………………………………………46
(八)統計分析………………………………………………………………46
五、實驗架構…………………………………………………………………48
第四章 結果與討論…………………………………………………………49
一、混合膠體的交互作用……………………………………………………49
二、NP之分析…………………………………………………………………57
(一)NP表面電位差…………………………………………………………57
(二)NP粒徑大小之分析……………………………………………………60
(三)NP之熱穩定性…………………………………………………………66
三、NP之包覆率與釋放率……………………………………………………69
(一)Genistein之包覆率…………………………………………………69
(二)Genistein於模擬系統中之釋放率…………………………………71
第五章 結論…………………………………………………………………80
參考文獻………………………………………………………………………81

表 目 錄
頁次
表一、類黃酮在常見食品中分佈情形………………………………………4
表二、異黃酮在大豆粗粉經脫脂後含量變化………………………………7
表三、天貝製程中異黃酮素的含量變化……………………………………9
表四、豆漿與豆腐製程中異黃酮素的含量變化……………………………10
表五、分離黃豆蛋白製程中異黃酮素的含量變化…………………………11
表六、膠囊化對包覆物的影響………………………………………………32
表七、鹼處理動物膠-κ-紅藻膠交互作用之二因子反應曲面法設計之代碼與對應實際值………………………………………………………………………………40
表八、不同膠體包覆層對NP Z-電位差之影響……………………………59
表九、genistein由NP中釋出之速率常數…………………………………76

圖 目 錄
頁次
圖一、類黃酮與異黃酮之結構式……………………………………………4
圖二、異黃酮異構物之結構式………………………………………………5
圖三、異黃酮素於中性與鹼性模擬溶液中以120°C 加熱 20分鐘之殘存量………………………………………………………………………………13
圖四、界面活性劑、共界面活性劑、微胞、與逆微胞之示意圖…………15
圖五、微乳化液三相圖可能呈現的內部結構………………………………19
圖六、Winsor Ⅰ、Ⅱ、Ⅲ、與Ⅳ等四種微乳液型態……………………21
圖七、單層與雙層乳化系統的形成模式……………………………………29
圖八、鹼處理動物膠與κ-紅藻膠混合膠體於pH 6.0及50℃下之視黏度反應曲面圖與等高線圖………………………………………………………………………………51
圖九、鹼處理動物膠與κ-紅藻膠混合膠體於pH 6.0及50℃下之流體行為係數反應曲面圖與等高線圖………………………………………………………………………55
圖十、動態光散射分析NP粒徑分佈圖………………………………………61
圖十一、NP之原子力顯微鏡觀察之影像……………………………………63
圖十二、pH值對包覆genistein之NP粒徑分佈之影響……………………65
圖十三、包覆genistein之NP在pH 6.0 5mM KH2PO4緩衝溶液中放置室溫下之熱安定性………………………………………………………………………………68
圖十四、包覆genistein之NP於不同pH值之5 mM之KH2PO4緩衝溶液之熱安定性………………………………………………………………………………70
圖十五、控制釋放時genistein由NP內部釋放至液相之質量輸送………………………………………………………………………………73
圖十六、NP中genistein於37℃下不同pH之累加釋出曲線……………79
何慧如,詹朝閔,馬美蓉,陳烱堂。1992。鹼處理麵筋功能性之探討。食品科學 19:241-252。
大澤ヒデ. 1995. Current review report of micro-capsule technology.食品と開發 30(8):41-44.
沈佳僡。2006。包覆阿斯巴甜超微膠囊之安定性及其控制釋出動力學研究。私立輔仁大學食品營養研究所碩士論文。
陳昭誠。1997。牛乳免疫球蛋白G安定性之研究。國立台灣大學食品科技研究所博士論文。
陳烱堂,陳佳祺,吳曉霞,李正雲。1992。玉米澱粉與明膠複合膠體系統之不相容性。輔仁學誌 26:117-128.
李潔如,牟中原。1994。微胞、微乳液的形成。科學月刊23:739-749。
莊志仁。2005。食用膠之技術與應用。台北:華香園出版社。80-97,293-309 p。
Andelman D, Cates ME, Rouk D, Satran SA. 1987. Structure and phase equilibria of microemulsions. J Chem Phys 87:7229-7241.
Anderson JJB, Garner SC. 1997. Phytoesterogens and human function. Nutr Today. 32(6):232-239.
Arjmandi BH, Smith BJ. 2002. Soy isoflavones’ osteoprotective role in postmenopausal women: mechanism of action. J Nutr Biochem 13:130-137.
Baeza RI, Carp DJ, Pérez O, Pilosof AMR. 2002. κ-Carrageenan-protein interactions: effect of proteins on polysaccharide gelling and textural properties. Lebensm-Wiss Technol 35:741-747.
Bakan JA, Anderson JL. 1970. Microencapsulation. In: Lachman L. Lieberman HA, Kanig JL, editors. The theory and practice of industrial pharmacy. Philadelphia: Lea & Febiger PA. p 384-407.
Baroli B, López-Quintela MA, Delgado-Charro MB. 2000. Microemulsions for topical delivery of 8-methoxsalen. J Control Rel 69:209-218.
Bathe RV, Hafliger F, Langenbucher F, Schonleber D. 1975. In vitro comparison of the beaker, the rotation-basket and the column dissolution-rate methods. Pharm Acta Helv 50:3-10.
Birdi KS. 1982. Microemulsion: effect of alkyl chain length of alcohol and alkane. Colloid Polym Sci 260:628-631.
Birt DF, Hendrich S, Wang W. 2001. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157-177.
Borovac T, Pelage JP, Kasselouri A, Prognon P, Guiffant G, Laurent A. 2006. Release of ibuprofen from beads for embolization: in vitro and in vivo studies. J Control Release 115:266-274.
Brnes HA, Hutton JF, Walters K. 1989. Viscosity. In: Barnes HA, editor. An introduction to rheology. NY: Elsevier Applied Science. p 11-35.
Brouns F. 2002. Soya isoflavones: a new and promising ingredient for the health foods sector. Food Res Int 35:187-193.
Cassidy A, Hanley B, Lamuela-Raventos RM. 2000. Isoflavones, lignans and stilbenes – origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044-1062.
Chang HM, Ou-Yang RF, Chen YT, Chen CC. 1999. Productivity and some properties of immunoglobulin specific against Streptococcus mutants serotype c in chicken egg yolk (IgY). J Agri Food Chem 47(1): 61-66.
Chen WF, Huang MH, Tzang CH, Yang M, Wong MS. 2003. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochimica et Biophysica Acta 1638:187-196.
Chen XG, Lee CM, Park HJ. 2003. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system. J Agric Food Chem 51:3135-3139.
Chhabra V, Pillia V, Mishra BK, Mprrone A, Shah DO. 1995. Synthesis, Characterization, and Properties of Microemulsion-Mediated Nanophase TiO2 Particles. Langmuir 11:3307-3311.
Chien JT, Hoff JE, Lee MJ, Lin HM, Chen YJ, Chen LF. 1990. Oil extraction of dried ground corn with ethanol. Chemical Engineering Journal 43:B103-B113.
Chien JT, Hsieh HC, Kao TH, Chen BH. 2005. Kinetic model for studying the conversion and degradation of isoflavones during heating. Food Chem 91:425-434.
Chien JT, Lien Y-Y, Shoemaker CF. 1999. Effect of polarity of complexing agents on thermal and rheological properties of rice starch gels. Cereal Chem 76(6):837-842.
Cook NC, Samman S. 1996. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66-76.
Coward L, Kirk M, Albin N, Barnes S. 1996. Analysis of plasma isoflavones by reversed-phase HPLC reaction ion monitoring-mass spectrometry. Clin Chim 247:121-124.
Cui JH, Goh JS, Kim PH, Choi SH, Lee BJ. 2000. Survival and stability of bifidobacteria loaded in alginate poly-ι-lysine microparticles. Int J Pharm 210:51-59.
Delgado-Charro MB, Iglesias-Vilas G, Blanco-Méndez J, López-Quintela MA, Marty J, Guy RH. 1997. Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur J Pharm Biopharm 43:37-42.
Díaz M, Dunn CM, McClements DJ, Decker EA. 2003. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J Agri Food Chem 51(8): 2365-2370.
Dickinson E. 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll 17(1): 25-39.
Dixon RA, Ferreira D. 2002. Genistein. Phytochemistry 60:205-211.
Eldridge AC, Kwolek WF. 1983. Soybean isoflavones: effect of environment and variety on composition. J Agric Food Chem 31(2):394-396.
Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. 1988. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035-1041.
Fang JY, Leu YL, Chang CC, Lin CH, Tsai YH. 2004. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Delivery 11:97-105.
Fang Y, Li L, Inoue C, Lundin L, Appelqvist I. 2006. Associative and segregative phase separations of gelatin/κ-carrageenan aqueous mixtures. Langmuir 22:9532-9537.
Faraji H, McClements DJ, Decker EA. 2004. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions. J Agri Food Chem 52(11): 3595-3600.
Fennema OR. 1996. Food chemistry. 3RD ed. NY: Marcel Dekker, Inc. 104, 112, 134-36, 373p.
Gao ZG, Choi HG. 1998. Physicochemical characterization and evaluation of microemulsion system for oral delivery of cyclosporine A. Int J Pharm 161:75-86.
Geankopolis CJ. 1972. Mass transport phenomena. NY: Holt, Rinehart and Winston, Inc. 35-46 p.
Grant La, Burns J. 1994. Edible coatings and films to improve food quality. In: Krochta JM, Balswin EA, editors. Application of coatings. Lancaster, PA: Technomic Publishing Company. p 189-200.
Gu YS, Decker AE, McClements DJ. 2005a. Influence of pH and carrageenan type on properties of β-lactoglobulin stabilized oil-in-water emulsions. Food Hydrocoll 19:83-91.
Gu YS, Decker AE, McClements DJ. 2005b. Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ι-carrageenan and gelatin. Langmuir 21:5752-5760.
Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. 2002. Survival of Ca-alginate microencapsulation Bifidobacterium spp. in milk and simulated gastrointestinal conditions, Food Microbiol 19:35-45.
Hatta H, Tsuda K, Akachi S, Kim M, Yamamoto T. 1993. Productivity and some properties of egg yolk antibody (IgY) against human rotavirus compared with rabbit IgG. Biosci Biotechnol Biochem 57(3): 450-454.
Haug IJ, Draget KI, Smidsrød O. 2004. Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydr Polym 56:11-19.
Herbig JH. 1968. Microencapsulation. Encyclopedia of Polymer Science and Technology. Vol 8. NY: Interscience. 719 p.
Hoar TP, Schulman JH. 1943. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152:102-103.
Holland TA, Tabata Y, Mikos AG. 2003. In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 91:299-313.
Hollman PCH, Hertog MGL, Katan MB. 1996. Analysis and health effects of flavonoids. Food Chem 57:43-46.
Hsieh HC, Kao TH, Chen BH. 2004. A fast HPLC method for analysis of isoflavones in soybeans. J Liquid Chrom Related Technol 27:315-324.
Hu M, McClements DJ, Decker EA. 2003. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein, and soy protein isolate. J Agri Food Chem 51(6): 1696-1700.
Huang RQ, Dillon GH. 2000. Direct inhibition of glycine receptors by genistein, a tyrosine kinase inhibitor. Neuropharmacology 39:2195-2204.
Itoh K, Matsui S, Tozuka Y, Oguchi T, Yamamoto K. 2002. Improvement of physicochemical properties of N-4472 Part Ⅱ: characterization of N-4472 microemulsion and the enhanced oral absorption. Int J Pharm 246:75-83.
Jackson LS, Lee K. 1991. Microencapsulation and the food industry. Lebensm-Wiss Technol 24:289-297.
Kahlweit M. 1988. Microemulsions. Science 240(4852):617-621.
Kawakami K, Yoshilawa T, Hayashi T, Nishihara Y, Masuda K. 2002a. Microemulson formulation for enhanced absorption of poorly soluble drugs Ⅱ. In vivo syudy. J Controlled Release 81:75-82.
Kawakami K, Yoshilawa T, Moroto Y, Kanaoka E. 2002b. Microemulson formulation for enhanced absorption of poorly soluble drugs Ⅰ. Prescription design, J Controlled Release 81:65-74.
King AH. 1995. Encapsulation of food ingredients. In: Rosch SJ, Reineccius GA, editors. Encapsulation of food ingredients: a review of available technology, focusing on hydrocolloids. Washington DC: Amer Chem Soc. p 26-39.
Kumi-Diaka J. 2002. Chemosensitivity of human prostate cancer cells PC3 and LNCaP to genistein isoflavone and β-lapachone. Biol Cell 94:37-44.
Lee EN, Sunwoo HH, Menninen K, Sim JS. 2002b. In vitro studies of chicken egg yolk antibody (IgY) against Salmonela enteritidis and Salmonella typhimurium. Poultry Sci 81(5): 632-641.
Lee JH, Renita M, Fioritto RJ, Martin SKS, Schwartz SJ, Vodovotz Y. 2004. Isoflavone characterization and antioxidant activity of Ohio soybeans. J Agric Food Chem 52(9):2647-2651.
Lee KA, Chang SK, Lee YJ, Lee JH, Koo NS. 2002a. Acid stability of anti-Helicobacter pyroli IgY in aqueous polyol solution. J Biochem Mol Biol 35(5):488-493.
Lian WC, Hsiao HC, Chou CC. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int J Food Microbiology 86:293-301.
Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW. 2007. Preparation and characterization of nanoparticles shelled with chitosan for oral isulin delivery. Biomacromolecules 8:146-152.
Mahungu SM, Diaz-Mercado S, Li J, Schwenk M, Singletary K, Faller J. 1999. Stability of isoflavones during extrusion processing of corn/soy mixture. J Agri Food Chem 47:279-284.
Marcotte M, Taherian AR, Hoshahili T, Ramaswamy HS. 2001a. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int 34:695-703.
Marcotte M, Taherian AR, Trigui M, Ramaswamy HS. 2001b. Evaluation of rheological properties of selected salt enriched food hydrocolloids. J Food Eng 48:157-167.
Martinez KD, Baeza RI, Millán F, Pilosof AMR. 2005. Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams. Food Hydrocoll 19:361-369.
Matsamura M, Obata A, Fukushima D. 1989. Objectionable flavor of soy milk developed during the soaking of soybeans and its control. J Food Sci 54: 602-607.
Matsamura M, Obata A. 1993. β-Glucosidase from soybeans hydrolyze daidzein and genistein, J Food Sci 50:144-147.
Matsuda S, Norimoto F, Matsumoto Y, Ohba R, Teramoto Y, Ohta N, Ueda S. 1994. Solubilization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from Lactobacillus casei spp. Rhamnosus. J Ferment Bioeng 77:439-441.
McClements DJ. 2000. Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocoll 14:173-177.
Michon C, Konaté K, Cuvelier G, Launay B. 2002. Gelatin/carrageenan interactions in coil and ordered conformations followed by a methylene blue spectrophotometric method. Food Hydrocoll 16:613-618.
Mitchell DJ, Ninham BW. 1981.Micelles, vesicles and microemulsions. J Chem Soc, Faraday Trans 2:601-629.
Morales D, Gutièrrez JM, García-Celma MJ, Solans YC. 2003. A study of the relation between biocontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19:7196-7200.
Morel C, Stermitz FR, Tegos G, Lewis K. 2003. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem 51(19):5677-5679.
Moulik SP, Paul BK. 1998. Structure, denamics and transport properties of microemulsions. Adv Colloid Interface Sci 78:99-195.
Mukerjee S, Miller CA, Ford TJ. 1983. Theory of drop size and phase continuity in microemulsionsⅠ. Bending effects with unchanged surfactants. J Colloid Interface Sci 91(1):223-243.
Negishi M, Hiroki A, Miyajima M, Yoshida M, Asano M, Katakai R. 1999. In vitro release control of ketoprofen from pH-sensitive gels consisting of poly(acryloyl-L-proline methyl ester) and saturated fatty acid sodium salts. Radiation Physics and Chemistry 55:167-172.
Nurmi T, Mazur W, Heinonen S, Kokkonen J, Adlercreutz H. 2002. Isoflavone content of soy based supplements. J Pharm Biomed Anal 28:1-11.
Ogawa S, Decker EA, McClements DJ. 2003a. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agri Food Chem 51(18): 5522-5527.
Ogawa S, Decker EA, McClements DJ. 2003b. Production and characterization of o/w emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agri Food Chem 51(9): 2806-2812.
Onwulata CI, Smith PW, Craig JC, Holsinger VH. 1994. Physical properties of encapsulated spray-dried milkfat. J Food Sci 59 (2): 316-320.
Overbeek JTG ,De Bruyen PL, Verhoeckx F. 1986. Microemulsions. London: Academic Press. 111-132 p.
Park KM, Kim CK. 1999. Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery. Int J Pharm 181:173-179.
Parris N, Cooke PH, Hicks KB. 2005. Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 53:4788-4792.
Pothakamury UR, Barbosa-Cnovas GV. 1995. Fundamental aspects of controlled release in food. Trends Food Sci Technol 6:397-406.
Potter S. 1998. Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr Rev 56:231-235.
Pranoto Y, Lee CM, Park HJ. 2007. Characterizations of fish gelatin films added with gellan and κ-carrageenan. Lebensm-Wiss Technol 40:766-774.
Reineccius GA, Ward FM, Whorton C, Andon SA. 1995. Developments in gum acacias for the encapsulation of flavors. In: Risch SJ, Reineccius GA, editors. Encapsulation and controlled release food ingredients. Washington DC: Amer Chem Soc. p 161-168.
Reinwald S, Weaver CM. 2006. Soy isoflavones and bone health: a double-edged sword? J Nat Prod 69:450-459.
Schwuger MJ, Strickdom K. 1995. Microemulsions in Technical Processes. Chem Rev 95:849-864.
Scriven LE. 1976. Equilibrium bicontinuous structure. Nature 263(9):123-125.
Secreto G, Chiechi LM, Amadori A, Miceli R, Venturelli E, Valerio T, Marubini E. 2004. Soy isoflavones and melatonin for the relief of climacteric symptoms: a multicenter, double-blind, randomized study. 47:11-20.
Shahidi F, Han XQ. 1993. Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33:501-547.
Sheu TY, Rosenberg M. 1998. Microstructure of microcapsules consisting of whey proteins and carbonhydrates. J Food Sci 63(3): 491-494.
Sjöblom J, Lindberg R, Friberg SE. 1996. Microemulsions - phase equilibria characterization, structures, applications and chemical reactions. Adv Colloid Interface Sci 65:125-287.
Sonneville-Aubrun O, Simonnnet JT, L’Alloret F. 2004. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108-109:145-149.
Sood A, Panchagnula R. 2001. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 101:3275-3303.
Ungar Y, Osundahunsi OF, Shimoni E. 2003. Thermal stability of genistein and daidzein and its effects on their antioxidant activity. J Agric Food Chem 51(15):4394-4399.
Wang C, Ma Q, Pagadala S, Sherrard MS, Kishnan PG. 1998. Changes of isoflavones during processing of soy protein isolates. JAOCS 75(3): 337-341.
Wang HJ, Murphy PA. 1996. Mass balance study of isoflavones during soybean processing. J Agri Food Chem 44(8):2377-2383.
Watanabe Y, Fang X, Adachi S, Fukami H, Matsuno R. 2004. Oxidation of 6-O-arachidonoyl L-ascorbate microencapsulated with a polysaccharide by spray-drying. Lebensm-Wiss Technol 37:395-400.
Wei H, Wei L, Frenkel K, Brwen S. 1993. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 250:1-12.
Winsor PA. 1968. Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formulation and theoretical significance of liquid crystalline solutions. Chem Rev 68:1-40.
Zafar T, Weaver CM, Jones K, Moore DR, Barnes S. 2004. Inulin effects on bioavailability of soy isoflavones and their calsium absorption enhancing ability. J Agric Food Chem 52(10):2827-2831.
Zeller BL, Saleeb FZ, Ludescher RD. 1999. Trends in development of porous carbohydrate food ingredients for use in flavor encapsulation. Trends Food Sci Technol 9:389-394.
Zemb TN, Hyde ST, Derian PJ, Barnes IS, Ninham BW. 1987. Microstructure from x-ray scattering: the disordered open connected model of microemulsions. J. Phys. Chem 91(14):3814-3820.
Zorba Ö. 2006. The effects of the amount of emulsified oil on the emulsion stability and viscosity of myofibrillar proteins. Food Hydrocoll 20:698-702.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top