跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡清榮
研究生(外文):Chien Ching Jung
論文名稱:應用基因型案例式推論於代理人計畫演化
論文名稱(外文):Agent Plan Evolution using Genetic Case-based Reasoning
指導教授:許見章郭忠義郭忠義引用關係
指導教授(外文):Hsu Chien ChangKuo Jong Yih
學位類別:碩士
校院名稱:輔仁大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:代理人計畫演化BDI模型案例式推論基因演算法
外文關鍵詞:Agent Plan EvolutionBDI ModelCase-based ReasoningGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對代理人演化提出一個可記憶性的代理人計畫演化模型,以BDI模型簡單且強大的行為表示為基礎,使用信念、願望及意圖表示代理人的心智狀態,導入案例資料結構,使代理人擁有記憶能力。代理人計畫結合策略計畫與案例式推論計畫,使代理人擁有策略計畫的能力與參考過去經驗計畫的能力。進階地,案例式推論計畫中,加入基因演化的概念,利用基因演算法的概念演化代理人的計畫及調適案例記憶。本論文應用於逃避追蹤者遊戲,遊戲中包含追蹤者、逃避者及障礙物,並且實作追蹤者代理人說明我們的方法。
This paper addresses an agent plan evolution model, it based on BDI-model which has easy so powerful behavior representation. BDI-model uses belief, desire, and intension to represent agent’s mental state. Leading in case–based data structure make agents have memory ability. Agent plan evolution process combines strategy plan and case-based inference plan make agent have the ability of strategy planning and the ability of reference past experience plan. In advance, adding genetic evolution concepts into case-based inference plan, using the concept of genetic algorithm to evolutes agent’s plan and adapt case memory. This paper applied on pursuit-evasion game, which includes pursuers, evaders, and barriers. At last, we propose pursuer agents to describe our approach.
1. 緒論 5
1.1 研究背景與動機 5
1.2 研究目的 6
1.3 研究流程 6
1.4 論文架構 7
2 文獻探討 8
2.1 BDI代理人模型(BDI Agent Model) 8
2.2 代理人計畫演化 9
2.3 基因演算法(Genetic Algorithm) 10
2.4 案例式推論(Case-based Reasoning) 12
2.4.1 最鄰近演算法 13
2.5 CBR-BDI代理人架構 14
2.6 基因型案例式推論(Genetic Case-based Reasoning) 14
3 代理人行動計畫演化方法 16
3.1 知識表示 18
3.2 計劃演化程序(Plan Evolution Process) 20
4 案例研究 24
4.1 逃避追蹤者遊戲 25
4.2 逃避追蹤者問題正規化 26
4.3 追蹤代理人知識表示 27
4.3.1 追蹤者代理人的心智狀態 27
4.3.2 案例表示 30
4.3.3 追逐策略 32
4.4 追蹤代理人計畫流程 35
4.4.1 案例擷取 35
4.4.2 案例交配 38
4.4.3 案例突變 38
5 系統設計 39
5.1 追蹤者代理人的系統架構 39
5.2 系統環境 41
5.2.1 硬體規格及設定 41
5.2.2 軟體規格及設定 41
5.2.3 作業環境 41
5.3 系統實作 42
5.4 實驗結果 44
5.4 實驗討論 45
6 結論 47
[1]J. Holland, “Outline for a Logical Theory of Adaptive Systems”, Journal ACM, Vol. 3, pp. 297-314, 1962.
[2]J. Holland, “Adaptation in Natural and Artificial Systems”, Ann Arbor,MI: University of Michigan Press, 1975.
[3]D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning”, New York: Addison-Wesley, 1989.
[4]L. Davis, “Handbook of Genetic Algorithms”, Van Nostrand Reinhold, 1991.
[5]J. Kolodner, “Knowledge Management Handbook”, CRC Press, 1999.
[6]B. Bartsch-Spörl, M.Lenz, A. Hübner, “Case-Based Reasoning: Survey and Future Directions”, Proceedings of the 5th Biannual German Conference on Knowledge-Based Systems(XPS-99), Würzburg, Germany, pp. 67-89, 1999.
[7]R. Schmidt, S. Montani, R. Bellazzi, L. Portinale and L. Gierl, “Cased-Based Reasoning for Medical Knowledge-based systems”, International Journal of Medical Informatics, Vol. 64, pp. 355-367, 2001.
[8]K.-S Kim and I. Han, ”The Cluster-indexing Method for Case-based reasoning using Self-organizing Maps and Learning Vector Quantization for Bond Rating Cases”, Expert Systems with Applications , Vol. 21, pp. 147-156, 2001.
[9]A. Aamodt, E. Plaza, “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches”, Artificial Intelligence Communications, Vol. 7, No. 1, pp. 39-59, 1994.
[10]I. Watson, “Case-Based Reasoning is a Methodology not a Technology”, Knowledge-Based Systems, Vol. 12, pp. 303-308, 1999.
[11]M. E. Bratman, “Intention, Plans, and Practical Reason”, Harvard University Press: Cambridge, Massachusetts, USA, 1987.
[12]A. S. Rao and M. P. Georgeff, “Modeling Rational Agents within a BDI-Architecture”, Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann Publishers: San Mateo, California, USA, pp. 473-483, 1991.
[13]C. Vasudevan, K. Ganesan, “Case-Based Path Planning for Autonomous Underwater Vehicles”, IEEE International Symposium on Intelligent Control, 1994.
[14]Cindy Olivia, Chee-Fon Chang, Carlos F. Enguix, and Aditya K. Ghose, “Case-Based BDI Agents: an Effective Approach for Intelligent Search on the World Wide Web”, AAAI Symposium on Intelligent Agents in Cyberspace, 1997.
[15]J. M. Corchado and R. Laza, “Constructing Deliberative Agents with Case-based Reasoning Technology”, International Journal of Intelligent Systems, Vol. 18, pp. 1227-1241, 2003.
[16]J. M. Corchado, R. Laza, L. Borrajo, J. C. Yañes and M. Valiño, “Increasing the Autonomy of Deliberative Agents with a Case-based Reasoning System”, International Journal of Computational Intelligence and Applications, Vol. 3, pp.101-118, 2003.
[17]X. Liu, “Combining Genetic Algorithms and Case-based Reasoning for Structure Design”, M.S. Computer Science Thesis, University of Nevada at Reno, 1996.
[18]S. J. Louis and J. Johnson. “Robustness of Case-Initialized Genetic Algorithms”, Proceedings of the 12th International Florida AI Research Society, FLAIRS-99, pp. 129-133, 1999.
[19]S. J. Louis and John McDonnell, “Learning With Case-Injected Genetic Algorithms”, IEEE Transactions on Evolutionary Computation, Vol. 8, No. 4, pp. 316-328, 2004.
[20]D. Job, V. Shankararaman and J. Miller, “Combining CBR and GA for Designing FPGAs”, Computational Intelligence and Multimedia Applications, 1999.
[21]K. S. Shin and I. G. Han, “Case-Based Reasoning Supported by Genetic Algorithm for Corporate Bond Rating”, Expert Systems with applications, Vol. 16 pp. 85-95, 1999.
[22]A. G. D. S. Garza and Mary Lou Maher, “Evolving Design Layout Cases To Satisfy FENG SHUI Constraints”, Proceeding of the Fourth Conference on Computer-Aided Architectural Design Research, 1999.
[23]Wen-Jun Yin, Min Liu and Cheng Wu, “A Genetic Learning Approach With Case-based Memory for Job-shop Scheduling Problems”, Proceedings of the First International Conference on Machine Learning and Cybernetics, Vol. 3, pp. 1683-1687, 2002.
[24]Thomas Little Heath, “The Thirteen Books of Euclid's Elements”, 1956.
[25]Shung-Bin Yan, Zu-Nien Lin, Hsun-Jen Hsu and Feng-Jian Wang, “Intention scheduling for BDI agent systems”, Proceedings of the 29th Annual International Computer Software and Applications Conference, Vol.2, pp. 133-140, 2005.
[26]N. Liu, M. A. Abdelrahman and S. Ramaswamy, “Robust and adaptable job shop scheduling using multiple agents”, Proceedings of the Thirty-Seventh Southeastern Symposium, pp. 45-49, 2005.
[27]S. S. Walker, R. W. Brennan, D. H. Norrie, “Holonic job shop scheduling using a multiagent system”, IEEE Intelligent Systems, Vol. 20, pp. 50-57, 2005.
[28]J. Y. Kuo, M. L. Tsai and N. L. Hsueh, “Goal Evolution based on Adaptive Q-learning for Intelligent Agent”, IEEE International Conference on Systems, Man and Cybernetics. 2006.
[29]J. Y. Kuo and H. C. Lai, “Coevolution Approach for Evolving Multi-Agent System”, Conference on Fuzzy Theory and Technology, 2006.
[30]M. Wooldridge, “Practical Reasoning with Procedural Knowledge: A Logic of BDI Agent with Know-How”, Proceedings of the International Conference on Formal and Applied Practical reasoning, pp. 663-678, 1996.
[31]R. Laza and J. M. Corchado, “CBR-BDI Agent in Planning”, Symposium on Informatics and Telecommunications, pp. 181-192, 2002.
[32]K. Ramamohanarao, J. Bailey and Paolo Busetta, “Transaction Oriented Computational Models for Multi-Agent Systems”, 13th IEEE International Conference on Tools with Artificial Intelligence, pp. 11-17, 2001.
[33]T. Y. Slonim, M. Schneider, “Design issues in fuzzy case-based reasoning”, Fuzzy Set and System, Vol. 117, pp. 251-267, 2001.
[34]J. B. Noh, K. C. Lee, J. K. Kim, J. K. Lee and S. H. Kim, “A Case-based Reasoning Approach to Cognitive Map-driven Tacit Knowledge Management“, Expert Systems with Applications, Vol. 19, pp. 249-259, 2000.
[35]K. Pal and O. Palmer, “A Decision-support System for Business Acquisitions”, Decision Support Systems, Vol. 27, pp. 411-429, 2000 .
[36]S. Li and Q. Yang, ”ActiveCBR: An Agent System That Integrates Case-Based Reasoning and Active Databases” , Knowledge and Information Systems, Vol. 3, pp. 225-251, 2001.
[37]B. U. Haque, R. A. Belecheanu, R. J. Barson and K. S. Pawar, “Toward the Application of Case Based Reasoning to Decision-making in Concurrent Product Development(concurrent engineering)”, Knowledge-Based Systems, Vol. 13, pp. 101-112, 2000.
[38]E. K. Burke, B. MacCarthy, S. Petrovic and R. Qu, ”Structured Cases in Case-based Reasoning-re-using and Adapting cases for Time-tabling Problems”, Knowledge-Based Systems, Vol. 13, pp. 159-165, 2000.
[39]R. K. Maloy, K. Y. Lee, and L. H. Sibul, “A Pursuit-Evasion Differential Game in Relative Polar Coordinates with State Estimation”, Proceedings of the American Control Conference, pp. 2463-2467, 1995.
[40]Yue-Hai Wang and Chi Xu, “Adaptive Algorithm For Multi-Agent Learning Optimal Cooperative Pursuit Strategy Based On Markov Game”, Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 2973-2978, 2004.
[41]V. Isler, C. Belta, K.daniilidis and G. J. Pappas, “Hybrid Control for Visibility-Based Pursuit-Evasion Games”, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 1432-1437, 2004.
[42]R. Vidal, Omid Shakernia, H. J. Kim, D. H. Shim and S. Sastry, “Probabilistic Pursuit–Evasion Games: Theory”, IEEE Transactions on Robotics and Automation, Vol. 18, pp. 662-669, 2002.
[43]A. Antoniades, H. J. Kim and S. Sastry, “Pursuit-Evasion Strategies for Teams of Multiple Agents with Incomplete Information”, Proceedings of the 42nd IEEE Conference on Decision and Control Maui, 756-761, 2003.
[44]Y. Hu, S. X. Yang, L. Z. Xu and Q. H. Meng, “A Knowledge Based Genetic Algorithm for Path Planning in Unstructured Mobile Robot Environments”, Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, pp. 767-772, 2004.
[45]Y. Hu and S. X. Yang, “A Knowledge Based Genetic A1gorithm for Path Planning of a Mobile Robot”, Proceedings of the 2004 IEEE International Conference on Robotics 8 Automation, pp. 4350-4355, 2004.
[46]Geoff Nitschke, “Co-evolution of cooperation in a Pursuit Evasion Game”, Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 2037-2042, 2003.
[47]X. Luo, H. F. Leung and H. M. Lee, “A Multi-Agent Framework for Meeting Scheduling Using Fuzzy Constraints”, Proceedings of the 4th International Conference on Multi-Agent Systems, pp. 409-410, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 15.任弘,〈評高中歷史第五冊中國文化史〉,《教學與研究》,第四期,1982年6月。
2. 51.郭繼生,〈什麼是藝術史〉,《雄獅美術》,第120期,1981年2月。
3. 49.張元,〈高中歷史教科書龍騰本的撰寫原則〉,《歷史月刊》2002年12月號。
4. 92.龔鵬程,〈台灣美學與人文〉,《思與言》,第四十卷第二期,2002年6月。
5. 91.龔鵬程,〈教育與意義世界的開啟〉,《通識教育季刊》,第五卷第三期,1998年9月。
6. 86.歐用生,〈國民小學社會科探究教學法之研究〉,《新竹師專學報》,第八期,1982年6月。
7. 80.劉德美,〈美國中學歷史科—世界史國家課程標準:探索通往現在之路評介〉,《歷史教育》,創刊號,1997年6月。
8. 77.楊深坑,〈美育與實踐智慧〉,《通識教育季刊》,第五卷第一期,1998年3月。
9. 73.楊國賜,〈開拓人文教育的新境界〉,《國立嘉義大學通識教育集刊》,第一期,2003年12月。
10. 72.彭煥勝,〈人文教育的理念與反思:一個教育史學的觀點〉,《人文及社會學科教學通訊》,十二卷四期,2001年12。
11. 71.黃綉媛,〈建立卓越的歷史教學新典範:創造思考、合作學習、網路互動與教學支援系統〉,《中學教育學報》,第7期,2000年6月。
12. 68.游天助,〈從高中中國文化史教科書的分析談改進之道〉,《歷史教學》,第一卷第三期,1988年11月。
13. 66.葉子超,〈社會科情意教學與評量〉,《國教園地》,第57-58期。
14. 63.黃春秀,〈中國人物肖像畫試析〉,《國立歷史博物館學報》,第十期,1998年。
15. 62.黃光國,〈情意教育的內涵與策略〉,《教育資料文摘》,第27卷第1期,1991年1月。