跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江國宏
研究生(外文):Kuo-Hung Chiang
論文名稱:基於模糊適應滑動模式控制之三維天車調節與追蹤控制設計
論文名稱(外文):The Regulation and Tracking Control Design in Three Dimensional Overhead Crane System via Fuzzy Adaptive Sliding Mode Control
指導教授:徐國政徐國政引用關係張政元張政元引用關係
指導教授(外文):Kou-Cheng HsuCheng-Yuan Chang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:92
中文關鍵詞:三維天車系統模糊邏輯控制滑動模式控制解耦合滑動平面函數向量非線性控制死區
外文關鍵詞:three dimensional overhead cranefuzzy logic controlsliding mode controldecoupledeadzone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
  本論文針對三維天車系統的控制進行研究,並根據模糊邏輯控制以及滑動模式控制理論,發展出具有天車位置調節、追蹤以及同時抑制吊掛繩索擺盪功能之控制方法的設計。本論文所設計之模糊適應滑動模式控制器,藉由解耦合滑動平面函數向量的定義,以及動態適應斜率參數矩陣調整的策略,加上模糊邏輯控制其直覺設計的特點,除可達到三維天車系統之天車位置調節、追蹤以及同時抑制吊掛繩索搖擺的控制需求之外;相對於傳統模糊邏輯控制方法,本論文提出之控制器設計方法可有效的減少所使用之模糊邏輯規則數目,加快三維天車控制量之計算速度,使其於即時控制上更具優勢。在設計模糊適應滑動模式控制器時,需要系統的動態模型來選取滑動平面函數;而當控制器於實際使用時,因為此控制方法主要是經由模糊邏輯計算出對三維天車系統的控制量,因此不需要利用到任何系統動態模型內的數值參數資訊。換言之,本論文所提出之控制方法為免動態模型之控制方法。此控制方法透過証明可確保系統軌跡於有限時間內接觸到順滑平面;且系統軌跡進入順滑平面後,便只會在此順滑平面上滑動,並且最終漸進收斂至系統平衡點上。另外,當天車驅動馬達為小功率輸出時,於實際的天車工作環境中可能因為軌道磨擦力或者馬達所需啟動力矩過大等因素,而造成系統非線性控制死區的問題。針對此非線性控制死區問題,本論文亦提出補償方法加以有效克服。最後,本論文將透過電腦模擬和利用實驗室中的三維天車系統設備進行即時控制的實驗。模擬以及實驗驗證結果顯示,本論文所設計之控制器於三維天車系統在天車位置調節、追蹤以及同時抑制繩索擺盪的控制上,皆具有預期之良好控制性能。
This thesis develops a capable control scheme to realize the regulation, tracking and anti-swing for a three dimensional overhead crane system. Through the definition of the decoupling sliding surface vector, the dynamic adaptive strategy of the slope matrix, and the benefit in intuitional design of the fuzzy logic control, the proposed controller can also deal with both the regulation and the tracking control of the three dimensional overhead crane system once little modification of some parameters of the controller. Compared with the conventional fuzzy control design, the proposed control scheme can reduce the number of fuzzy rules effectively, which is more valuable in real time control of a three dimensional overhead crane system. The proposed control scheme just needs to use the dynamic model to choose the proper sliding surface, but it does not need any parameters of the dynamic model in practical control period. In other words, the proposed control scheme is a model free controller. The stability of the proposed scheme is also proved to guarantee that the system states will approach to sliding surface and abide in equilibrium point asymptotically. For the existence of inherent nonlinear control deadzone in the practical crane operation, a compensating algorithm is applied to overcome the deadzone bias in the control. Finally, the success of the proposed control scheme is demonstrated by some simulations and practical experiments.
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1、研究源起與動機
1.2、文獻回顧
1.3、研究特點與貢獻
1.4、論文章節架構
第二章 三維天車系統動態模型與實驗設備
2.1、座標系統
2.2、三維天車系統之非線性動態模型
2.3、線性化模型
2.4、三維天車系統實驗設備
第三章 免動態模型之模糊適應滑動模式控制
3.1、模糊滑動模式控制
3.2、模糊適應滑動模式控制
3.3、非線性控制死區補償法則
3.4、吊掛繩索長度控制
3.5、小結
第四章 三維天車系統追蹤軌跡規劃
4.1、速度參考曲線
4.2、追蹤軌跡
4.3、小結
第五章 電腦模擬與實驗結果
5.1、三維天車系統調節定位與抑制擺盪控制
5.1.1、調節定位與抑制擺盪控制電腦模擬
5.1.2、調節定位與抑制擺盪控制實驗
5.1.3、大型三維天車系統調節定位與抑制擺盪控制電腦模擬
5.2、三維天車系統追蹤定位與抑制擺盪控制
5.2.1、追蹤定位與抑制擺盪控制電腦模擬
5.2.2、追蹤定位與抑制擺盪控制實驗
5.2.3、大型三維天車系統追蹤定位與抑制擺盪控制電腦模擬
5.3、小結
第六章 結論與未來之展望
參考文獻
作者簡歷
作者著作列表
[1]I. Fantoni, R. Lozano, F. Mazenc, and K. Y. Pettersen, "Stabilization of a nonlinear underactuated hovercraft," Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, pp. 2533-2538, 1999.
[2]F. Mazenc, A. Astolfi, and R. Lozano, "Lyapunov function for the ball and beam: robustness property," Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 1208-1213, 1999.
[3]A. Shiriaev, H. Ludvigsen, O. Egeland, and A. Pogromsky, "On global properties of passivity based control of the inverted pendulum," Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, pp. 2513-2518, 1999.
[4]Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, "Nonlinear coupling control laws for an underactuated overhead crane system," IEEE/ASME Transactions on Mechatronics, vol. 8, no. 3, pp. 418-423, 2003.
[5]M. Reyhanoglu, S. Cho, and N. H. Mcclamroch, "Feedback stabilization for a special class of underactuated mechanical systems," Proceedings of the 38th IEEE Conference on Decision and Control, vol.2, pp. 1658-1663, 1999.
[6]A. Z. A. Garni, K. A. F. Moustafa, and S. S. A. K. J. Nizami, "Optimal control of overhead cranes," Control Engineering Practice, vol. 3, no. 9, pp. 1277-1284, 1995.
[7]A. Piazzi and A. Visioli, "Optimal dynamic-inversion-based control of an overhead crane," IEE Proceedings- Control Theory and Applications, vol. 149, no. 5, pp. 405-411, 2002.
[8]A. Burananda, J. Ngamwiwit, S. Panaudomsup, T. Benjanarasuth, and N. Komine, "Neural network based self-tuning control for overhead crane systems," Proceedings of the 41st SICE Annual Conference, vol.3, pp. 1944-1947, 2002.
[9]D. Liu, J. Yi, and M. Tan, "Proposal of GA-based two-stage fuzzy control of overhead crane," Proceedings of IEEE TENCON’02, vol.3, pp. 1721-1724, 2002.
[10]L. A. Scardua, J. J. D. Cruz, and A. H. R. Costa, "Optimal control of ship unloaders using reinforcement learning," Advanced Engineering Informatics, vol. 16, no. 3, pp. 217-227, 2002.
[11]C. V. Hollot, D. P. Looze, and A. C. Bartlett, "Parametric uncertainty and unmodeled dynamics: analysis via parameter space methods," Automatica, vol. 26, no. 2, pp. 269-282, 1990.
[12]B. A. Novel and F. Boustany, "Adaptive control of a class of mechanical systems using linearization and Lyapunov methods: a comparative study on the overhead crane example," Proceedings of the 30th IEEE Conference on Decision and Control, vol. 1, pp. 120-125, 1991.
[13]J. Gao and D. Chen, "Learning and H∞ control of an overhead crane for obstacle avoidance and disturbance rejection," Proceedings of the 36th IEEE Conference on Decision and Control, vol. 1, pp. 275-280, 1997.
[14]Y. Sakawa and H. Sano, "Nonlinear model and linear robust control of overhead traveling cranes," Nonlinear Analysis, vol. 30, no. 4, pp. 2197-2207, 1997.
[15]G. Bartolini, A. Pisano, and E. Usai, "Robust control of container cranes: theory and experimental validation," Proceedings of the 40th IEEE Conference on Decision and Control, vol. 2, pp. 1409-1414, 2001.
[16]Y. Fang, E. Zergeroglu, W. E. Dixon, and D. M. Dawson, "Nonlinear coupling control laws for an overhead crane system," Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 639-644, 2001.
[17]Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, "Nonlinear coupling control laws for a 3-DOF overhead crane system," Proceedings of the 40th IEEE Conference on Decision and Control, vol. 4, pp. 3766-3771, 2001.
[18]H. H. Lee, Y. Liang, D. Segura, "A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting," ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 128, pp. 842-845, 2006.
[19]任正隆, "吊車系統利用視覺回授之滑動模式控制," 國立中央大學電機工程研究所碩士論文, 2006.
[20]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. D. Whyte, "Fuzzy sliding-mode controllers with applications," IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 38-46, 2001.
[21]S. Y. Chen, F. M. Yu, and H. Y. Chung, "Decoupled fuzzy controller design with single-input fuzzy logic," Fuzzy Sets and Systems, vol. 129, no. 3, pp. 335-342, 2002.
[22]J. C. Lo and Y. H. Kuo, "Decoupled fuzzy sliding-mode control," IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435, 1998.
[23]S. W. Kim and J. J. Lee, "Design of a fuzzy controller with fuzzy sliding surface," Fuzzy Sets and Systems, vol. 71, no. 3, pp. 359-367, 1995.
[24]D. Liu, J. Yi, D. Zhao, and W. Wang, "Adaptive sliding mode fuzzy control for a two-dimensional overhead crane," Mechatronics, vol. 15, no. 5, pp. 505-522, 2005.
[25]H. H. Lee, "Motion planning for three-dimensional overhead cranes with high-speed load hoisting," International Journal of Control, vol. 78, no. 12, pp. 875-886, 2005.
[26]H. H. Lee, "A new design aproach for the anti-swing trajectory control of overhead cranes with high-speed hoisting," International Journal of Control, vol. 77, no. 10, pp. 931-940, 2004.
[27]C. Y. Chang, K. H. Chiang, and S. W. Hsu, "Fuzzy controller for the 3-D overhead crane system," Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics, pp. 724-729, 2005.
[28]C. Y. Chang and K. H. Chiang, "A fuzzy projection method for positioning and anti-swing of a 3-D overhead crane system," Proceedings of the 2005 CACS Automatic Control Conference, vol. d, no. 4, pp. 92-97, 2005.
[29]C. Y. Chang, K. H. Chiang, and S. W. Hsu, "A fuzzy logic positioning and anti-swing control for the 3-DOF overhead crane system," Proceedings of the 12th National Conference on Fuzzy Theory and Its Applications, 2004.
[30]G. Bartolini, A. Pisano, and E. Usai, "Second-order sliding-mode control of container cranes," Automatica, vol. 38, no. 10, pp. 1783-1790, 2002.
[31]G. Corriga, A. Giua, and G. Usai, "An implicit gain-scheduling controller for cranes," IEEE Transactions on Control Systems Technology, vol. 6, no. 1, pp. 15-20, 1998.
[32]K. C. Hsu, C. Y. Chang, and K. H. Chiang, "Fuzzy sliding mode controller for the regulation and the tracking control of the overhead crane system," Proceedings of the 2007 National System Science and Engineering Symposium, 2007.
[33]C. Y. Chang, K. C. Hsu, K. H. Chiang, and G. E. Huang, "An enhanced adaptive sliding mode fuzzy control for positioning and anti-swing control of the overhead crane system," Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics, pp. 992-997, 2006.
[34]H. H. Lee, "Modeling and control of a three-dimensional overhead crane," ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 120, pp. 471-476, 1998.
[35]Y. S. Kim, H. S. Seo, and S. K. Sul, "A new anti-sway control scheme for trolley crane system," Proceedings of the IEEE Conference on Industry Applications, vol. 1, pp. 548-552, 2001.
[36]H. Chen, B. Gao, and X. Zhang, "Dynamical modelling and nonlinear control of a 3D crane," Proceedings of the IEEE International Conference on Control and Automation, vol. 2, pp. 1085-1090, 2005.
[37]S. K. Cho and H. H. Lee, "An anti-swing control of a 3-dimensional overhead crane," Proceedings of the 2000 American Control Conference, vol. 2, pp. 1037-1041, 2000.
[38]Inteco, "3DCrane installation and commissioning version 1.3," Krakow Poland, 2000.
[39]Y. C. Liang and K. K. Koh, "Concise anti-swing approach for fuzzy crane control," Electronics Letters, vol. 33, no. 2, pp. 167-168, 1997.
[40]C. Y. Chang, S. W. Hsu, and K. H. Chiang, "The switching fuzzy controller of the overhead crane system," Proceedings of the 2004 IEEE International Conference on Control Applications, Vol. 1, pp. 753-758, 2004.
[41]C. Y. Chang, K. H. Chiang, and S. W. Hsu, "A Practical Fuzzy Controllers Scheme of Overhead Crane," Journal of Control Theory and Applications, vol. 3, no. 3, pp. 266-270, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top