跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁家銘
研究生(外文):Chia-Ming Liang
論文名稱:高頻寬大範圍脈波寬度校正電路
論文名稱(外文):High-Bandwidth Wide-Range Duty Cycle Corrector
指導教授:呂學坤黃弘一
指導教授(外文):Shyue-Kung LuHong-Yi Huang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:脈波寬度穩定度高頻寬濾波器放大器比例式
外文關鍵詞:DutyCharge pumpLow pass filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:243
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出脈波寬度校正電路,其架構分別為單端和差動端。在單端脈波寬度校正電路中,使用了非比例式的控制級電路讓設計更簡易。透過理論分析,使用Gain-Boosting架構的Charge Pump可以提高電路的穩定度以及降低控制電壓的抖動讓輸出訊號的jitter和脈波寬度誤差降低。單端脈波寬度校正電路也因為架構簡易,大大降低功率損耗。在差動端脈波寬度校正電路中,使用了二階差動濾波器提高電路的穩定度。Combined Charge Pump穩定了電流的充放電,還有簡化的低電壓操作放大器增加了電路的頻寬和input common mode range。本論文三個電路透過詳盡的理論分析去設計各參數,並用HSPICE去驗證模擬,最近再以0.18μm製程去實現。兩種脈波寬度校正電路,量測的操作頻率都可從20MHz到2.5GHz,並且都有低jitter的表現。
This work presents singled-ended and differential wide input range 50% duty cycle corrector with high bandwidth and low jitter performance. The Singled-ended duty cycle corrector adopts ratioless control stage and gain-boosting charge pump to increase the performance. Gain-boosting charge pump increases the stability of the closed-loop performance and decreases jitter and output duty error as well. The Differential duty cycle corrector uses a second order differential low-pass filter to increase the stability of the closed loop. A combined charge pump is proposed to stabilize the current charge and current sink. A simplified low-voltage amplifier increases the input common-mode range and bandwidth. Both architectures are implemented in a 0.18μm CMOS process. Both of the proposed duty cycle corrector achieves 50% output duty and operates from 20-MHz to 2.5-GHz with wide input duty cycle range and low jitter performance.
目錄
中文摘要……………………………………………………………………………..i
英文摘要………………………………………………………………………………ii
誌謝…………………………………………………………………………………...iii
目錄…………………………………………………………………………………...iv
表目錄………………………………………………………………………………..vi
圖目錄……………………………………………………………………………….vii

第一章 緒論
1.1研究動機………………………………………………………………………..1
1.2設計流程………………………………………………………………………..2
1.3章節安排………………………………………………………………………..2

第二章 相關研究發展現況
2.1基本架構簡介…………………………………………………………………..3
2.2 先前技術說明比較…………………………………………………………….3
2.2.1傳統型脈波寬度控制電路……………………………………………….3
2.2.2低電壓型脈波寬度控制電路…………………………………………….5
2.2.3互補型脈波寬度控制電路……………………………………………….6

第三章 單端脈波寬度校正電路與倍頻電路
3.1 大範圍輸入單端脈波寬度校正電路……………………………………...…..9
3.1.1 輸入控制級……………………………………………………………..10
3.1.2 緩衝器鏈………………………………………………………………..12
3.1.3充放電荷幫浦……………………..…….……………………..………..12
3.2 理論分析………………………………………………………………...……14
3.3 模擬結果與電路比較………………………………………………….……..19
3.4倍頻電路…………….………………………………………………….……..24
3.4.1倍頻電路架構介紹…….……………………………..…….…….……..24
3.4.2倍頻電路模擬及規格…….……………………………..….…….……..28

第四章 差動端脈波寬度校正電路
4.1 大範圍輸入差動端脈波寬度校正電路………………………………….......31
4.1.1 輸入控制級……………………………………………………………..32
4.1.2 緩衝器鏈………………………………………………………………..32
4.1.3 差動式充放電荷幫浦………….……………………..…………….…..34
4.1.4 低通濾波器……………..…….……………………..…………….…..36
4.2 理論分析………………………………………………………………...……42
4.3 模擬結果與電路比較………………………………………………….……..53

第五章 電路佈局與模擬及晶片量測
5.1 單端脈波寬度校正與倍頻電路佈局與模擬………………………………...59
5.1.1 Control Stage電路佈局………………………………………………..59
5.1.2 Buffer Chain電路佈局…………………………………………….…...59
5.1.3 Differential Buffer Chain電路佈局……………………………………61
5.1.4 NAND Gate電路佈局………………………...……………………….62
5.1.5 Charge Pump電路佈局……………….…………………...…………..63
5.1.6 I/O Pad佈局考量…….….….…….…….……….…….……………….63
5.1.7 單端脈波寬度校正電路佈局的模擬……………………….….……..65
5.1.8倍頻電路佈局後的模擬……………………….….…………………...69
5.2 差動端脈波寬度校正與倍頻電路佈局與模擬……..……………………...72
5.2.1 Control Stage電路佈局………………………………………………..72
5.2.2 Buffer Chain電路佈局………………………………………………...72
5.2.3 Charge Pump電路佈局……………….…………………...…………..73
5.2.4 Low Pass Filter電路佈局……………….…………………...………...74
5.2.5操作轉導放大器電路佈局……………….…………..……...………...76
5.2.6 I/O Pad佈局考量…….….….…….….……….…….……………….77
5.2.7差動端脈波寬度校正電路佈局的模擬………….…………….….…..79
5.3 測試規劃與晶片量測………..………………………………………………...81
5.3.1單端脈波寬度電路測試規劃………………………...………………..84
5.2.2單端脈波寬度電路晶片量測……………………………………..…...84
5.3.3倍頻電路測試規劃…………………………………...………………..87
5.3.4倍頻電路晶片量測………………………………………………..…...88
5.3.5差動端脈波寬度電路測試規劃………………………...……………..90
5.3.6差動端脈波寬度電路晶片量測………………………...……………..92

第六章 結論與未來工作
6.1結論……………………………………………………………………………96
6.2未來工作………………………………………………………………………96

參考文獻……………………………………………………………………………..97
附件…………………………………………………………………………………..99
英文論文…………………………………………………………………………100
簡歷…………………………………………………………………………...… 127
[1]J.S. Wang, C.F. Hu and Y.M. Wang, “An all-digital pulse-width locked loop,” M.S. Thesis, Department of Electrical Engineering, National Chung Cheng University, Taiwan, 2002.
[2]H.C. Chow, “Duty cycle control circuit and applications to frequency dividers,” in Proc. ICECS'99, pp. 1619-1622, 1999.
[3]Fenghao Mu and Christer Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, Vol. 35, pp. 134-141, Feb. 2000.
[4]Jinn-Shyan Wang and Po-Hui Yang, “Low-voltage CMOS pulsewidth control loop using push-pull charge pump,” Electronics Letters, Vol. 37, pp. 409-411, Nov. 2001.
[5]P.H. Yang and J.S. Wang, “Low-voltage pulsewidth control loop for SOC applications,” IEEE J. Solid-State Circuits, Vol. 37, pp. 1348-1351, Oct. 2002.
[6]Wei-Min Lin and Hong-Yi Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE Proceedings, International SOC Conference, pp. 304-304, 2003.
[7]W.M. Lin and H.Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE J. Solid-State Circuits, Vol. 39, pp. 1366-1369, Aug. 2004.
[8]S.R. Han and S.I. Liu, “A 500-MHz-1.25GHz fast-locking pulsewidth control loop with presettable duty cycle,” IEEE J. Solid-State Circuits, Vol. 39, pp. 463-468, Mar. 2000.
[9]K.H. Cheng, C.W. Su, C.L. Wu, Y.L. Lo, “A phase-locked pulsewidth control loop with programmable duty cycle,” in Proc. 2004 IEEE Asia-Pacific Conference, pp. 84-87, 2004.
[10]S. R. Han and S. I. Liu, “A single-path pulsewidth control loop with a built-in delay-locked loop,” IEEE J. Solid-State Circuits, Vol. 40, pp. 1130-1135, May 2005.
[11]Lin, S.Y.-S., Tu, S.H.-L, “Pulsewidth control loop with tunable duty cycle for high-speed circuit applications,” IEEE J. Circuits, Devices and Systems, IEE Proceedings, Vol. 153, pp. 107-114, April 2006.
[12]Kazuyuki Nakamura, Muneo Fukaishi, Yoshinori Hirota, Youetsu Nakazawa and Michio Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” IEEE Symposiums on VLSI Circuits Digest of Technical Papers, pp. 48-49, 2000.
[13]Woogeun Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc. ISCAS '99, pp. 545-548, 1999.
[14]Jovanovic, G., Mitic, D., Stojcev, M., “An Adaptive Pulse-Width Control Loop,” IEEE 25th International Conference on Microelectronics, pp. 626-629, May 2006.
[15]Choi, Y.-S., Han, D.-H, “Gain-Boosting Charge Pump for Current Matching in Phase-Locked Loop, ” IEEE Circuits and Systems II, Vol. 53, Issue 10, pp. 1022-1025, 2006.
[16]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001.
[17]Woogeun Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc. ISCAS '99, pp. 545-548, 1999.
[18]Bortecene Terlemez and John P. Uyemura, “The design of a differential CMOS charge pump for high performance phase-locked loops” in Proc. ISCAS '04, pp. IV-561-4, 2004.
[19]Hong-Yi Huang, Wei-Ming Chiu, Wei-Ming Lin, “Pulsewidth control loop circuit using combined charge pumps and miller scheme,” IEEE Solid-State and Integrated Circuits Technology, Vol. 2, pp. 1539-1542 , Oct. 2004.
[20]Djahanshahi H. and Salama C.A.T., “Differential CMOS circuits for 622-MHz/933MHz clock and data recovery applications,” IEEE J. Solid-State Circuits, pp. 847-855, Jun. 2000.
[21]M. Takamiya and M. Mizuno, “A 6.7fF/m2Bias-Independent Gate Capacitor (BIGCAP) With Digital CMOS Process and Its Application to the Loop Filter of a Differential PLL,” IEEE J. Solid-State Circuits, Vol. 40, pp. 719-725, Mar. 2005.
[22]Mirabbasi, S. and Martin, K., “Design of loop filter in phase-locked loops,” IEEE Electronics Letters, Vol. 35, Issue 21, pp. 1801-1802, Oct. 1999.
[23]N. S. Nise, Control Systems Engineering, 3rd edition, Wiley, New York, 2000.
[24]J.S. Yim and C.M. Kyung, “Reducing cross-coupling among interconnect wires in deep-submicron datapath design,” in Proc. 36th Design Automation Conference, pp. 485-490, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.張乃方(2003),「芳香物語」,科學月刊,第三十四卷第九期。
2. 33.陳慧娟(2003),「香水設計&廣告對性別文化的詮釋趨勢」,設計研究第三期,p22-31。
3. 25.楊清田(2003),「包裝容器的造型意象與喜好度之關係研究」,設計研究第三期,p80-93。
4. 16.張淑美(1995),「從自我概念談青少年的自我追尋與其輔導」,學生輔導,36,88-95。
5. 13.侯權珍(1996),「嗅覺的誘惑--香水的美色形味」,台北:藝術家第256 期。
6. 12.李輝(1994),「影響國小學童自我觀念發展之重要因素」,國民教育,34,6-9。
7. 5.吳春桂(2003),「剖析香水的世界」,科學月刊,第三十四卷第九期。
8. 34.陳俊宏、黃雅卿、伍小玲、陳世華(2005),「商業包裝設計對提升商品價值感之探討-以不同涉入程度商品為例」,商業設計學報,p59-81。
9. 李宗薇(1998),教科書的編輯機制。課程與教學季刊,1(1),41-56。
10. 高強華(1999)。論教學專業與教科書的選用,高中教育,5,25-28。
11. 陳勝三(1997)。國小教科書開放後平議。研習資訊,14(3),10-13。
12. 黃政傑(1998)。建立優良的教科書審定制度。課程與教學季刊,1(1),1-16。
13. 黃政傑(1999)。中小學教科書的審查與選用。高中教育,5,20-24。
14. 紀大偉〈臍〉《聯合文學》第140期,1996。
15. 蕭瑞莆〈另一種視觀╱看法:閱讀╱書寫邱妙津的《鱷魚手記》及德瑞克•賈曼的電影《花園》〉《中外文學》第25卷第1期,1996.6。