跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾達豐
研究生(外文):Da-Feng Chung
論文名稱:追蹤動態最佳滑差之防鎖死剎車系統之智慧型控制
論文名稱(外文):Dynamic Optimum-Slip-Rate Tracking of Intelligent Control for Anti-Lock Braking Systems
指導教授:王偉彥王偉彥引用關係
指導教授(外文):Wei-Yen Wang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:90
中文關鍵詞:防鎖死煞車系統刺毛模型滑動模式控制基因演算顫抖現象
外文關鍵詞:Anti-lock Braking SystemsLuGre ModelSliding mode controlChatteringGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:820
  • 評分評分:
  • 下載下載:520
  • 收藏至我的研究室書目清單書目收藏:0
防鎖死煞車系統主要的目的乃藉著控制煞車分泵液壓壓力,使車輛保持在最大摩擦力,縮短煞車的距離,使車輛能夠達到快速煞車的目標,同時確保車輛在煞車過程中有良好的方向操控性與穩定性。本論文主要貢獻在於,進一步考慮具傾斜條件之車體模型,並提出基因演算法之適應性滑動模糊控制方法。
在控制方法上,本論文使用適應性滑動模糊控制方法對系統作補償控制器,以模糊類神經網路近似未知函數,並提出以基因演算法作為適應調整的策略減少全滑動控制所產生之抖振問題,使用滑動控制減少近似誤差對系統的影響以保證系統穩定性,以及使用Lyapunov定理證明其穩定性,因此系統的穩定性可以被保證,最後並以例子的模擬來驗證所提出方法之成效。
The goal of an anti-blocking system (ABS) is a kind of equipment which can adjust the braking torque of each wheel automatically, avoiding the lock-up of wheels. The ABS can provide directional stability and steering ability of vehicle and help to take the most advantage of the road adhesive force, and also reduce the braking distance. In this paper, our contribution is that we consider a vehicle model and propose a hybrid controller for the vehicle model.
The controller consists of a sliding mode controller with fuzzy neural network. The fuzzy neural network, which is used as an approximator, is on-line tuned using a genetic algorithm to reduce chattering. The sliding mode controllers are used to eliminate the approximate error.
Using Lyapunov stability theorem, the stability of the control strategy is guaranteed. Simulations show the effectiveness of the proposed ABS controller for various road conditions.
目錄
頁次
中文摘要…………………………………………………………………………. i
英文摘要……………………………………………………………………….... ii
誌謝 ……………………………………………………………………….... iii
目錄 ……………………………………………………………………….... iv
表目錄 ….………………………………………………………………........... vi
圖目錄 ………………………………………………………………………… vii
符號說明 ……………………………………………………………………… ix
第一章 緒論......………………………………………………………………… 1
1.1研究背景……………………………………………………………….. 1
1.2文獻回顧……………………………………………………………….. 1
1.3研究方法與本文架構………………………………………………….. 2
第二章 防鎖死煞車系統之數學模式建立…………………………………….. 4
2.1摩擦力模型…………………………………………………………….. 4
2.2摩擦力與滑差的關係………….………………………………………. 6
2.3影響摩擦力的各種因素……………………………………………….. 8
2.3.1不同路面對摩擦力的影響………………………………………. 8
2.3.2不同煞車的車速對摩擦力的影響………………..……………. 10
2.3.3不同側滑角對抓地力的影響…………………………………... 10
2.4液壓系統之動態等效模型…………………………………………….. 12
2.5車體之動態等效模型………………………………………………….. 13
第三章 基因演算適應性之滑動模糊制……...……………………….……….. 17
3.1滑動模式控制理論介紹………………..…………...…………………. 17
3.1.1滑動模式…………………………………………………………. 18
3.1.2滑動條件與迫近條件……………………………………………. 18
3.1.3滑動模式控制設計………………………………………………. 21
3.2基因演算適應性之滑動模糊控制器設計…………………………….. 25
3.2.1滑動模糊控制設計………………………………………………. 25
3.2.2基因演算適應性法則……………………………………………. 28
3.3車輛行進於水平路面模擬結果……………………………………….. 30
第四章 考量斜坡條件之車體數學模式建立………………………………….. 37
4.1行進於斜坡之車體數學模式………………………………………….. 37
4.2考量斜坡條件之車體數學模式控制器設計………………………….. 39
4.2.1滑動模糊控制設計………………………………………………. 40
4.2.2基因演算適應性法則……………………………………………. 43
4.3 車輛行進於傾斜路面模擬結果與討論………………………………. 46
第五章 結論與未來展望……………………………………………………….. 82
參考文獻………………………………………………………………………. .. 83
參考文獻
[1]Drakunov. S., Dix, P., Ashrafi. B., “ABS Control Using Optimum Search via Sliding Modes,” IEEE Trans. on Control Systems Technology, Vol. 3, No. 1, pp. 79-85, March 1995.
[2]Y. K. Chin, W. C. Lin., D. M. Sidlosky, and D. S. Rule, “Sliding mode ABS wheel-slip control,” American Control Conference, pp. 1-5, June 1992.
[3]H. S. Tan. And Y. K. Chin, “Vehicle traction control: Variable structure control approach,” Trans. of the ASME Journal of Dynamic System, Measurement and Control, Vol. 113, No. 2, pp. 223-230, 1991.
[4]De Koker, P. M., Gouws, J., and Pretorius, L., “Fuzzy Control Algorithm for automotive Traction Control System,” IEEE Trans. on Control System Technology, Vol. 1, pp. 226-229, 1996.
[5]Mauer, G. F., “A Fuzzy Logic Controller for an Anti Braking System,” IEEE Trans. on Fuzzy systems, Vol. 3, No. 4, pp. 381-388, 1995.
[6]Layne, J. R. Passino, “Fuzzy Learning Control for Anti-skid Braking System,” IEEE Trans. on Control Systems Technology, Vol. 1, No. 2, pp. 122-129, 1993.
[7]陳立文, 「滑差回授式防滑煞車系統之分析與控制」 ,碩士論文,國立清華大學動力機械研究所,1987。
[8]張瑞宗, 「模糊脈寬調變控制液壓防鎖死煞車系統之研究」 ,碩士論文,國立成功大學機械工程研究所,1999。
[9]李連春, 「液壓防止鎖死煞車系統控制器設計之研究」 ,碩士論文,國立成功大學機械工程研究所,1997。
[10]陳銘滄, 「使用直接適應性模糊類神經控制器於防鎖死煞車系統之動態滑差估測與控制」 ,碩士論文,私立輔仁大學電子工程研究所,2005。
[11]陳冠銘, 「智慧型防鎖死煞車系統控制」 ,碩士論文,私立輔仁大學電子工程研究所,2003。
[12]朱賢明, 「汽車油壓煞車系統之性能分析與實驗之研究」 ,碩士論文,國立成功大學機械工程研究所,1995。
[13]R. Allen, T.J. Rosenthal, and H.T. Szostak, “Steady State and Transient Analysis of Ground Vehicle Handling,” SAE Paper, No. 87049, 1987.
[14]E. T. Bakker, H. B. Pacejka, and L. Lidner, “A New Tire Model with an application in Vehicle Dynamics Studies,” SAE Paper, No. 890087, 1989.
[15]Edwin E. Stewart and Lauren L. Bowler, “Road Testing of wheel Slip Control Systems in the Laboratory,” SAE Paper, No. 690215, 1969.
[16]H. Dugoff, P.S. Fancher and L.Segel, “An analysis of Tire traction Properties and Their influence on Vehicle Dynamic Performance,” SAE Paper, No. 700377, 1970.
[17]Canudas de Wit, “Dynamic Tire Friction Models for Vehicle Traction Control,” in Proceedings of 38th IEEE Conference of Decision and Control, Phoenix, AZ. , pp. 3746-3751, 1999.
[18]KarNopp, D., “Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Trans. on the ASME Journal of Dynamic Systems, Measurement and Control, Vol. 107, pp. 100-103, 1985.
[19]Armstrong. B., Control of Machines with Friction, Klumwe Academic Publishers, pp. 120-133, 1991.
[20]Harned, J. L., Johnston, L.E., Scharp, G., “Measurement of Tire Brake Force Characteristics As Related to Wheel Slip (Antilock) Control System Design,” SAE Paper, No. 69214, 1991.
[21]Manfred Adler, Radschlupf-Regel system, Vogel Verlag and Druck KG, pp. 20-45, 1993.
[22]Canudas de Wit, “A new model for control systems with friction,” IEEE Trans. on Automatic Control, Vol. 40, No. 3, pp. 419-425, March 1995
[23]H.E. Merritt, Hydraulic control system, Wiley, pp. 29-75, 1967.
[24]B. R. Lee and K. H. Sin, “Slip-Ratio control of ABS using sliding mode control,” in Proceedings of the 4th Korea-Russia International Symposium on Science and Tech, Vol. 3, pp. 72-77, 2000.
[25]Canudas de Wit, “Observers for Tire/Road Contact Friction using only wheel angular velocity information,” in Proceedings of 38th IEEE Conference of Decision and Control. Phoenix, AZ, pp. 3932-3937, 1999.
[26]Carlos Canudas de Wit, “Dynamic Tire Friction Models for Vehicle Traction Control,” in Proceedings of 38th IEEE Conference of Decision and Control, Phoenix, AZ, pp. 3746-3751, 1999.
[27]Carlos Canudas de Wit, and P. Tsiotras, “A new model for control of systems with friction,” IEEE Trans. on Automatic Control, Vol. 40, No. 3, pp. 419-425, 1995.
[28]Bakker, E. “Tire Modelling for Using in Vehicle Dynamic Studies,” Society of Automotive Engineers Paper, No. 870421, 1987.
[29]Canudas-de-Wit, Tsiotras P., Velenis E., Basset M. and Gissinger G., “Dynamic Friction Models for Road/Tire Longitudinal Interaction,” IEEE Vehicle System Dynamics, pp. 189-226, 2002.
[30]Canudas de Wit, C., R, Horowitz, R. and P, Tsiotras, “Model-Based Observers for Tire/Road Contact Friction Prediction,” IEEE Control and Information Science, pp. 81-97, May 1999.
[31]R. Palm, “Sliding mode fuzzy logic control,” in Proceedings of IEEE Conference Fuzzy System, pp. 519-526, 1992.
[32]A. Isidori, Nonlinear control system, New York: Springer-Verlag, pp. 1-26, 1989.
[33]R. A. Decarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of Nonlinear multivariable system: A tutorial,” in Proceedings of the IEEE, Vol. 76, pp. 212-232, 1988.
[34]Wei-Yen Wang, Chih-Yuan Cheng, and Yih-Guang Leu, “An Online GA-Based Output-Feedback Direct Adaptive Fuzzy-Neural Controller for Uncertain Nonlinear Systems,” IEEE Trans. on System, Man, and Cybernetics, Vol. 34, No. 1, pp. 334-345, Feb. 2004.
[35]Yonggon Lee, Stanislaw H Zak, “Designing a Genetic Neural Fuzzy Antilock-Brake-System Controller,” IEEE Trans. on Evolutionary Computation, Vol. 6, No. 2, pp. 198-211, April 2002.
[36]Li Li, Fei-Yue Wang, and Qunzhi Zhou, “Integrated Longitudinal and Lateral Tire/Road Friction Modeling and Monitoring for Vehicle Motion Control,” IEEE Trans. on Intelligent Systems, Vol. 7, No. 1, pp. 1-19, March 2006.
[37]J.M. Cho, D.H. Hwang, K.C. Lee, J. W Jeon, D. Y. Park, Y.J. Kim, J.S. Joh “Design And Implementation Of HILS System For ABS ECU Of Commercial Vehicles, ” ISIE, pp. 1272-1277, 2001.
[38]Rong-Jong Wai, Senior Member, IEEE, and Ching-Hsiang Tu, “Design of Total Sliding-Mode-Based Genetic Algorithm Control for Hybrid Resonant-Driven Linear Piezoelectric Ceramic Motor,” IEEE Trans. on Power Electronics, Vol. 22, No. 2, pp. 263-275, March 2007.
[39]Li-Xin Wang, “Fuzzy Basis Function, Universal Approximation and Orthogonal Least-Squares Learning,” IEEE Trans. on Neural Network, Vol. 3, No. 5, pp. 807-813, Sep. 1992.
[40]蘇木春、張孝德,機器學習,全華科技圖書,第9-24 - 9-33頁,1992。
[41]陳永平、張浚林,可變結構控制設計,全華科技圖書,第1 - 35頁,2002。
[42]王毓麒, 「防煞車系統之控制與實作」 ,碩士論文,大葉工學院機械工程研究所,1996。
[43]陽易昇, 「機車防煞車系統之控制與實作」 ,碩士論文,大葉工學院機械工程研究所,2000。
[44]Y. S. Kueon, “Fuzzy-Neural-Sliding mode controller and its applications to the vehicle anti-lock braking systems,” in Proceedings of IEEE/IAS Conference Industrial Automation and Control: Emerging Technologies, pp. 391-398, 1995.
[45]Juan A. Cabrera, Antonio Ortiz, Juan J. Castillo, and Antonio Simon, “A Fuzzy Logic Control for Antilock Braking System Integrated in the IMMa Tire Test Bench,” IEEE Trans. on Fuzzy System, Vol. 11, No. 3, pp. 246-252, July 2003.
[46]Canudas-de-Wit, “A New Nonlinear Observer for Tire/Road Distributed Contact Friction,” in Proceedings of 42th IEEE Conference of Decision and Control, pp. 2246-2252, 1999.
[47]Marcelo C. M. Teixeira, “Analog Neural Non-derivative Optimizers,” IEEE Trans. on Neural Network, Vol. 9, No. 4, pp. 447-469, July 1998.
[48]Shaocheng Tong, “Fuzzy Adaptive Sliding-Mode Control for MIMO Nonlinear Systems,” IEEE Trans. on Fuzzy System, Vol. 11, No. 3, pp. 447-459, July 2003.
[49]Han-Xiong Li and Shaocheng Tong, “A Hybrid Adaptive Fuzzy Control for A Class of Nonlinear MIMO Systems,” IEEE Trans. on Fuzzy System, Vol. 11, No. 1 , pp. 1-11, July 2003.
[50]William K., “Intelligent Control for Brake Systems,” IEEE Trans. on Control System, Vol. 7, No. 2, pp. 486-494, March 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊