# 臺灣博碩士論文加值系統

(3.231.230.177) 您好！臺灣時間：2021/08/04 01:34

:::

### 詳目顯示

:

• 被引用:0
• 點閱:300
• 評分:
• 下載:66
• 書目收藏:0
 我們討論當資料受到型I設限時，指數韋伯分配兩個形狀參數和可靠度，以及累積失效函數的點估計，而估計方法則利用 (1) 最大概似估計式 (2) 廣義最大概似估計式，即事後最大概似函數絕對極大值產生之處，(3) 在LINEX損失函數和(4) 平方誤損失函數下的貝氏估計式。得到理論結果後，最後再輔以數值模擬分析方式，利用樣本均方差比較四種參數估計式之優劣。
 In this thesis, we discuss point estimation of the two shape parameters, the reliability and the cumulative hazard function of anExponentiated Weibull distribution under type-I censoring. The following estimators are considered: (1) the maximumlikelihood estimator (2) the generalized maximum likelihood estimator (3) the Bayes estimators under squared-error lossfunction and the LINEX loss function. Comparison among these estimators are made using Monte Carlo simulation study based ontheir relative mean squared errors
 1 Introduction 12 Parametric Approach - Maximum Likelihood Method 32.1 When alpha is known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 When alpha and theta are both unknown . . . . . . . . . . . . . . . . . . . . . . 63 Bayesian Approach 73.1 When alpha is known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.1.1 Generalized Maximum Likelihood Estimator . . . . . . . . . . . 143.1.2 Bayes Estimator Under Squared-Error Loss Function . . . . . . . 153.1.3 Bayes Estimator Under LINEX Loss Function . . . . . . . . . . 173.2 When alpha and theta are independent random variables . . . . . . . . . . . . . . 213.2.1 Generalized Maximum Likelihood Estimator . . . . . . . . . . . 223.2.2 Bayes Estimator Under Squared-Error Loss Function . . . . . . . 233.2.3 Bayes Estimator Under LINEX Loss Function . . . . . . . . . . 283.3 When alpha and theta are dependent random variables . . . . . . . . . . . . . . . 303.3.1 Generalized Maximum Likelihood Estimator . . . . . . . . . . . 313.3.2 Bayes Estimator Under Squared-Error Loss Function . . . . . . . 323.3.3 Bayes Estimator Under LINEX Loss Function . . . . . . . . . . 374 Simulation Study 394.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Conclusions and Suggestions 69
 [1] Canfield, R.V., (1970). A Bayesian approach to reliability estimation using a loss function. IEEE Transactions on Reliability R-19, pp. 13-16.[2] Choudhury, A., (2005). A simple derivation of moments of the exponentiated Weibull distribution. Metrika 62(1), pp. 17-22.[3] Harry, F.M. and Ray, A.W., (1982). Bayesian Reliability Analysis; John Wiley and Sons: New York.[4] Kotz, S., Johnson, N.L. and Read C.B., (1982) Encyclopedia of Statistical Sciences, Vol 1; A Wiley-Interscience Publication.[5] Lindley, D.V., (1980). Approximate Bayesian method. Trabajos Estadistica 31, pp. 223-237.[6] Lye, L.M., Happuarachchi, K.P. and Ryan, S., (1993). Bayes estimation of the Extreme-Value reliability function. IEEE Transactions on Reliability 42(4), pp. 641-644.[7] Mudholkar, G.S. and Srivastava, D.K., (1993). Exponentiated-Weibull family for analyzing bathtub failure data. IEEE Transactions on Reliability 42(2), pp.299-302.[8] Mudholkar, G.S., Srivastava, D.K. and Marshall, F., (1995). The Exponentiated Weibull Family: A Reanalysis of the Bus-Motor-Failure Data. Techno-metrics 37(4), pp. 436-445[9] Mudholkar, G.S. and Hutson, A.D., (1996). Exponentiated-Weibull family: some properties and flood data application. Communications in Statistics: Theory and Methods 25(12), pp. 3050-3083.[10] Nassar, M.M. and Eissa, F.H., (2003). On the Exponentiated Weibull distribution. Communications in Statistics: Theory and Methods 32(7), pp. 1317-1336.[11] Nassar, M.M. and Eissa, F.H., (2004). Bayesian estimation for the exponentiated Weibull model. Communications in Statistics: Theory and Methods 33(10), pp. 2343-2362.[12] Nadarajah, S. and Gupta, A.K., (2005). On the moments of the exponentiated Weibull distribution. Communications in Statistics: Theory and Methods 34(2), pp. 253-256.[13] Hogg, R.V., Mckean, J.W and Craig, A.T., (2005). Introduction to Mathematical Statistics, 6th Ed; Pearson Prentice Hall.[14] Singh, U., Gupta, P.K. and Upadhyay, S.K., (2002). Estimation ofexponentiated-Weibull shape parameters under linex loss function. Communications in Statistics: Simulation and Computation 31(4), pp. 523-537.[15] Singh, U., Gupta, P.K., Upadhyay, S.K., (2005). Estimation of parameters for exponentiated-Weibull family under type-II censoring scheme. Computational Statistics & Data Analysis 48(3), pp. 509-523.[16] Sinha, S.K. and Sloan J.A., (1998). Bayes estimation of the parameters and reliability function of the 3-parameter Weibull distribution. IEEE Transactions on Reliability 37(4), pp. 364-369.[17] Soliman, A.A., (2001). Linex and quadratic approximate Bayes estimators applied to the Pareto model. Communications in Statistics: Simulation and Computation 30(1), pp. 47-62.[18] Varian, H.R., (1975). A Bayesian approach to real estate assessment. Studiesin Bayesian Econometrics and Statistics in Honoer of Leonard J. Savage, pp.195-208.[19] Vicente, G.C., Heleno, B. and Jorge, A.A., (1999). A Bayesian analysis for the Exponentiated-Weibull distribution. Journal of Applied Statistical Science 8(4), pp. 227-242.[20] Zellner, A., (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of the American Statistical Association 81(394), pp. 446-451.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 10、黃寶萍〈夏一夫－幾坡豔陽幾峰雲〉《藝術家》台北 2001.05 p286-289 2 5、李鑄晉〈中國繪畫與世界藝術的關係〉幼獅文藝1969 31卷5期 11 3 4、李鑄晉〈從工藝到繪畫--夏一夫的藝術道路〉 《藝術家》台北 1988.07 p149-155 4 2、江如海〈雄渾壯麗的崇高美感--夏一夫的山水繪畫〉《幼獅文藝》台北 1994.05 p76-78 5 9、秦雅君 〈花雖遲發香猶勝－夏一夫〉《典藏藝術雜誌》台北 1999.11 p156-163 6 7、李君毅〈用情筆墨放懷山水--夏一夫的繪畫藝術〉《典藏藝術雜誌》台北 2000.03 p251-253 7 11、黃茜芳〈夏一夫－枯筆焦墨見意境〉《藝術家》台北 2003.03 p386-391 8 12、曾肅良〈沈鬱寄雄渾,山靈照晚晴－夏一夫的寧靜世界〉《藝術家》台北 2001.02 p424-426 9 13、張元茜〈千筆揮落一山青－夏玉符的繪畫世界〉《雄獅美術》台北 10 朱桂芳（2007）。淺談學校行銷。教師天地，146，34-37。 11 何福田（2005）。學校行銷的意義與重要性。研習資訊，22（1），1-9。 12 吳明清(1997)。發展學校特色理念與作法。北縣教育，18，21-26。 13 吳清山（2005）。學校行銷管理的理念與策略。北縣教育。47，23-34。 14 吳清山（2007）。創意行銷　把學校特色傳出去。教師天地，146，8-11。 15 李建興（1994）。學校應成為社區文化堡壘。社教雙月刊，64，11-13。

 1 右設限韋伯成對存活資料之分析 2 韋伯分配與對數常態分配之判別研究 3 具有韋伯壽命零件的串聯系統之可靠度分析 4 在韋伯與其相關分配上的統計推論 5 衰變率服從韋伯分配之衰變試驗的最佳設計 6 考慮韋伯製程平均發生偏移下之製程能力評估方法 7 服從韋伯分配的退化性商品在時變需求及缺貨部分待補假設下的存貨模型 8 廣義加瑪分配誤判成韋伯或對數常態分配之效應分析 9 不可維修產品在型I設限下之最適採樣計劃-以IC產品為例 10 考慮韋伯分配下兩個相依製程之管制 11 應用EM方法於韋伯分配之多重設限之部分加速測試的參數設計 12 具韋伯壽命分佈之串聯系統在隱蔽資料加速壽命實驗下之可靠度分析 13 有關EM法於具韋伯之設限資料其參數之估計 14 田口損失函數與EWMA管制圖經濟設計在製程失效機制為韋伯分配之應用 15 韋伯可靠度檢定問題之探討

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室