跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳孟穎
研究生(外文):Meng-Ying Wu
論文名稱:單碳代謝分子(葉酸、維生素B12與同半胱胺酸),亞甲基四氫葉酸還原酶第677位點基因多型性與淋巴球粒線體DNA損傷與肝腫瘤惡化進展及肝癌罹患危險率之相關性
論文名稱(外文):Relationships between one-carbon factors (folate, B12, homocysteine and MTHFR C677T polymorphism), mitochondrial DNA large deletion, tumor progression, and cancer risk of hepatocellular carcinoma.
指導教授:許瑞芬許瑞芬引用關係
指導教授(外文):Huang Rwei-Fen S.
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:肝癌葉酸維生素B12同半胱胺酸MTHFR C677T粒線體DNA大片段斷損肝癌危險性肝腫瘤進化
外文關鍵詞:hepatocellular carcinoma (HCC)folatevitamin B12homocysteineMTHFR C677TmtDNA large deletioncancer risk of HCCtumor aggressiveness
相關次數:
  • 被引用被引用:2
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討單碳代謝生化分子 (葉酸、B12及同半胱胺酸)與亞甲基四氫葉酸還原酶 ( methylenetetrahydrofolate reductase, MTHFR ) 第677 位點基因多型性與 (Ⅰ)肝腫瘤進展之相關性及(Ⅱ)血液淋巴球粒線體DNA損傷與肝癌罹患危險率之影響。以病例對照研究方法,自台南奇美醫院永康院區胃腸肝膽科門診收取初次診斷罹患肝癌病患90名 (病例組),與性別年齡配對的正常健康對照組90名。檢測血清單碳代謝分子 (葉酸、B12與同半胱胺酸) 濃度,肝功能損傷指標GOT、GPT,與肝癌腫瘤指標AFP;分離血液單核淋巴球,以微生物法分析淋巴球內葉酸含量;抽取血液單核淋巴球總DNA,以即時定量聚合酶連鎖反應 ( real-time PCR ) 測定粒線體DNA斷損量與拷貝數,並針對MTHFR C677T單點突變設計引子與探針,作基因型分型觀察。研究結果(Ⅰ)顯示病例組60% 處於邊緣性葉酸缺乏營養狀態 ( 血清葉酸濃度 < 14 nM),血清維生素B12濃度與肝腫瘤指標AFP濃度呈顯著正相關( r = 0.2657, P = 0.0119 )。血清葉酸濃度與肝腫瘤體積及肝腫瘤數目呈顯著負相關( r = -0.2227, P = 0.0349;r = -0.2742, P = 0.0089 )。以TNM分組定義病例組腫瘤進化參數,在T4與StageⅣ組血清葉酸濃度最低,B12與GOT濃度最高。複邏輯式回歸以血清葉酸營養狀態作腫瘤大小與數目以及肝癌腫瘤惡化危險率預測,結果發現邊緣性葉酸缺乏( 血清葉酸濃度 < 14 nM ) 可能增加腫瘤直徑大於5公分或多腫瘤顆粒數之風險 ( OR = 4.422, 95%C.I. = 1.272-15.373; OR = 6.375, 95%C.I. = 1.117-36.391 )。調整AFP濃度,葉酸濃度對腫瘤大小的預測力消失,對腫瘤數目之預測力仍存在。邊緣性葉酸缺乏(血清葉酸濃度 < 14 nM ) 亦可能增加腫瘤參數進展風險( T2以上OR = 6.148, 95%C.I. = 1.105-34.202;Stage Ⅱ以上OR = 6.375, 95%C.I. = 1.117-36.391 ),調整AFP濃度並不影響此趨勢。MTHFR C677T基因型分布比例無顯著差異。研究結果顯示(Ⅱ)病例組淋巴球粒線體DNA斷損量顯著高於對照組。與淋巴球及血清葉酸濃度呈顯著負相關,與血清維生素B12濃度、GOT與AFP濃度呈顯著正相關。複邏輯式回歸以粒線體DNA變異量及單碳代謝分子濃度預測肝癌罹患危險率,高粒線體DNA斷損量組( ΔCt≧ 5.32 ) 顯著增加5倍肝癌罹患危險率 (OR = 5.384, 95%C.I.= 1.71 -16.87)。高粒線體基因斷損量合併葉酸缺乏營養狀態,對肝癌罹患危險率顯著上升13倍 (OR = 13.62, 95% C.I. = 1.453-122.85),調整GOT濃度後趨勢性消失。相較於677CC型,677TT型族群其血清葉酸濃度顯著下降,同半胱胺酸濃度顯著上升,病例組平均粒線體DNA斷損量顯著低於CC型與CT型 (P=0.0369),且TT基因型在低血清葉酸濃度與高粒線體DNA斷損族群對肝癌罹患危險率具保護性 (OR = 0.016, 95% C.I. = 0.001-0.344; OR = 0.013, 95% C.I. = 0.001-0.539)。低淋巴球葉酸濃度與高血清維生素B12濃度下TT基因型對肝癌的罹患具保護性 (OR= 0.007, 95% C.I. = 0.001-0.097; OR = 0.023, 95% C.I. = 0.001-0.608)。綜合上述肝癌患者普遍處於葉酸缺乏營養狀態,血清葉酸濃度與B12濃度可預測肝腫瘤惡化危險率。肝癌患者淋巴球有粒線體DNA大片段斷損累積,可用以預測肝癌罹患危險率,高粒線體基因斷損量合併葉酸缺乏營養狀態,對肝癌罹患危險率顯著上升13倍。肝癌組TT型族群淋巴球粒線體DNA斷損顯著降低。高淋巴球粒線體DNA斷損族群具MTHFR 677TT基因型者其肝癌罹患危險率降低。顯示677TT型對粒線體DNA完整性及肝癌罹患率具保護性,機制未明,還需進一步的實驗討論。
The aims of the study are to investigate the relationships between one-carbon factors (folate, B12, homocysteine and MTHFR C677T polymorphisms) and tumor progression of hepatocellular carcinoma HCC ( I ) and mitochondrial DNA (mtDNA) large deletion (ΔmtDNA4.9kb) in peripheral blood lymphocytes (PBLs) and cancer risk of HCC (Ⅱ). In this case-control study, 90 HCC cases who were first time diagnosed as HCC patients, and 90 age- and sex- paired healthy controls were recruited from Chi-Mei Medcal Center. Blood samples were collected for the analysis of serum folate, B12, homocysteine levels, glutamicoxaloacetic transaminase (GOT), glutamicpyruvic transaminase (GPT), and alpha-fetoprotein (AFP). Total DNA of PBLs was assayed for ΔmtDNA4.9kb, mtDNA copy numbers and MTHFR C677T polymorphism by use of real-time PCR. Results of the part Ⅰstudy revealed that 60% of HCC patients were in marginal folate deficiency (serum folate level < 14 nM), and 19 % of HCC patients were in hyperhomocysteinmia. Serum B12 level of HCC patients was significantly and positively correlated with AFP level (r = 0.2657, P = 0.0119). Serum folate concentration was inversely correlated with HCC tumor size (r = -0.2227, P = 0.0349) and tumor numbers ( r = -0.2742, P = 0.0089). By TNM classification of HCC progression, lower level serum folate and higher concentrations of B12 and GOT levels were associated with higher degree of HCC progression. After the adjustment of multiple factors, odds ratio of large- sized tumor (>5 cm) and multiple tumors were 4.422 (95% CI = 1.272- 15.373) and 6.375 (95% CI = 1.117 -36.391) in HCC patients with low serum folate level (< 14 nM) compared to those in adequate folate level. The odds ratio of tumor aggressiveness (T>2 and stage >Ⅱ) was 6.148 (95%C.I. = 1.105-34.202) and 6.375 (95%C.I. = 1.117-36.391) in HCC patients in low serum folate level (< 14 nM) compared to those in adequate folate level MTHFR C677T polymorphism did not modify risks of tumor progression in HCC patients.Result of part Ⅱ study showed that ΔmtDNA4.9kb of HCC group was siginificantly higher than those of the controls. mtDNA large deletion significantly correlated with serum folate (r = -0.3148, P = 0.0001) and lymphocytic folate (r = -0.1559, P = 0.0411) , serum B12 (r = 0.2287, P = 0.0023) , GOT (r = 0.2059, P = 0.0063) and AFP levels (r = 0.2118, P = 0.0049). The odds ratio of HCC in the group with high ΔmtDNA4.9kb (ΔCt ≧5.32) was 5 compared to those with low ΔmtDNA4.9kb (ΔCt ≧2.535). For those with high mtDNA mutation and low serum folate level , the OR of HCC was 13.62 (95% C.I. = 1.453-122.85) compared to the adequate folate group. Control subjects carrying 677TT genotype had lower level of serum folate and higher level of homocysteine compared with subjects carrying 677CC genotype. HCC patients with 677TT genotype had significantly lower levels of ΔmtDNA4.9kb as compared to those carrying with 677CC genotype. The odds ratio of HCC was 0.016 (95%C.I. = 0.01-0.344) and 0.013 (95%C.I. = 0.001-0.539) in subjects carrying with 677TT compared to those carrying on 677CC in low serum folate status (< 14 nM) or high ΔmtDNA4.9kb (ΔCt ≧5.32) frequency. In summary, we found that the prevalence of folate deficiency was 60% in HCC patient. Low serum folate (< 14 nM) could predict the cancer risk of HCC. Incresed accumulation of ΔmtDNA4.9kb in PBLs was found in HCC patients. The odds ratio of HCC by high ΔmtDNA4.9kb frequency and low serum folate level was 13 (OR = 13.62, 95% C.I. = 1.453-122.85). MTHFR 677TT genotype modulated levels of mtDNA mutation in PBLs of HCC patients. OR of HCC for those with 677TT genotype was significantly reduced, suggesting that 677TT genotype may have a protection against HCC progression. The mechanism is unclear and requires more studies.
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
致謝……………………………………………………………………..Ⅴ
表目錄…………………………………………………………………..Ⅹ
第一章 前言………………………………………………………........ 1
第二章 文獻回顧…………………………………………………........ 2
ㄧ、肝細胞癌 (hepatocellular carcinoma;HCC)…………….. … 2
二、葉酸營養狀態與肝臟疾病的相關性……………………….....… 3
三、葉酸營養不良與肝臟腫瘤的相關機制………………………….. 4
四、血清維生素B12濃度與肝臟疾病之相關性…………………….. 5
五、維生素B12結合蛋白濃度與肝癌的相關性…………………….. 6
六、粒線體基因突變與人體肝細胞癌化的指標…………………..… 7
七、粒線體DNA的突變機制………………………………………… 8
八、粒線體DNA變異與肝炎,肝癌以及葉酸營養之相關性……….. 9
九、甲醯基四氫葉酸還原酶(methylenetetrahydrofolate reductase,
MTHFR) 基因多型性對單碳代謝的影響……………….....….11
十、MTHFR C677T基因多型性對癌症的影響………………..…..12
十一、MTHFR C677T基因多型性與肝癌的相關性…………….…13
十二、研究目的………………………………………………………13

第三章 實驗材料與方法………………………………….…………..14
一、實驗設計…………………………………………………………14
二、研究對象…………………………………………………………14
三、研究方法………………………………………………...……….15
1.血樣收集與單核淋巴球分離保存………………………………..15
2.淋巴球DNA之萃取…………………………………….………...16
3.淋巴球粒線體DNA 4977 bp大片段斷損檢測……….…………16
4.粒線體DNA拷貝數測定……………………………………….…17
5.引子與TaqMan探針的選擇………………………………………17
6.MTHFR C677T基因多型性分析……………………………..…18
7.淋巴球葉酸濃度分析…………………………………………..…19
(1)葉酸的萃取………………………………………………….…19
(2)葉酸濃度測定…………………………..…………………..…19
四、 統計分析……………………………………………………..…20

第四章 結果……………………………………………….…………..21Ⅰ: 單碳代謝生化分子 (葉酸、B12及同半胱胺酸)、MTHFR C677T
基因多型性與肝癌腫瘤進化之相關性……………………..……21一、肝癌組受試者基本資料分析……………………………………21
二、血清葉酸濃度與肝功能及肝細胞癌腫瘤進化程度的相關性…22
三、血清同半胱胺酸濃度對肝損傷指標與肝癌腫瘤進化的影響…24
四、血清維生素B12濃度對肝損傷指標與肝癌腫瘤進化的影響….26
五、單碳代謝相關生化分子 (葉酸、B12及同半胱胺酸)、肝臟損傷
指標與肝腫瘤進化指標之相關性………………………………28
六、單碳代謝相關生化分子 (葉酸、B12及同半胱胺酸)與肝臟損傷指標GOT與GPT以及肝腫瘤指標AFP之相關性……….…28
七、單碳代謝相關生化分子 (葉酸、B12及同半胱胺酸)與肝腫瘤體積與腫瘤顆粒數之相關性………………………………………29
八、腫瘤進化參數與單碳代謝生化分子 (葉酸、B12及同半胱胺酸)、肝損傷指標與MTHFR C677T基因多型性之相關……………30
九、以MTHFR C677T 基因型預測肝腫瘤大小增大、腫瘤顆粒數上升與癌轉移發生危險率…………………………………………31
十、血清葉酸濃度對肝癌進化之相對危險率影響…………………31

Ⅱ: 淋巴球粒線體DNA變異、單碳代謝生化分子 (葉酸、B12及同
半胱胺酸)與肝癌罹患率的相關性……………………………....32
一、受試者基本資料分析………………………………..………...32
二、受試者之淋巴球粒線體DNA變異性觀察…………..……….33
三、淋巴球粒線體DNA斷損量 (ΔmtDNA4.9kb) 與單碳代謝生化分子(血清與淋巴球葉酸、B12及同半胱胺酸)、MTHFR C677T基因多型性及肝功能損傷指標的相關性……………………..33
四、淋巴球粒線體DNA拷貝數與單碳代謝生化分子 (血清與淋巴球葉酸、B12及同半胱胺酸)、MTHFR C677T 基因多型性與肝功能損傷指標的相關性……………………………………..…35
五、淋巴球粒線體DNA變異、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)、MTHFR C677T 基因多型性與肝功能損傷指標之相關性…………………………………………………………..36
六、淋巴球粒線體DNA大片段斷損、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)、MTHFR C677T 基因多型性與肝功能損傷指標之相關性……………………………..……………………36
七、使用複邏輯回歸模式以淋巴球粒線體DNA大片段斷損預測肝癌罹患危險率……………………………………..……………37
八、使用複邏輯回歸模式以淋巴球葉酸濃度預測肝癌罹患危險率…………………………………………………………..……37
九、使用複邏輯回歸模式以血清葉酸與維生素B12濃度預測肝癌罹 患危險率……………………………………………………..…38
十、MTHFR C677T基因型分組間單碳代謝分子濃度、淋巴球粒線體DNA變異與肝功能損傷指標相關性…...……………….…38
十一、淋巴球粒線體DNA大片段斷損與血清葉酸濃度交互作用對肝癌罹患率的影響…………………………………………..39
十二、淋巴球葉酸濃度、血清維生素B12濃度與MTHFR C677T基因型對肝癌罹患率的影響………………………………..…40

第五章 討論……………………………………………………………42
一、肝癌患者葉酸缺乏營養狀態普遍性……………………………42
二、低血清葉酸濃度與肝損傷指標GOT、GPT的相關性……..….42
三、低葉酸營養狀態對肝腫瘤體大小增加、多腫瘤顆粒數與肝腫瘤
進化的影響…………………………………………………..…42
四、高血清維生素B12濃度對多腫瘤顆粒數與肝腫瘤進化的影響45
五、MTHFR C677T基因多型性對降低肝腫瘤增生具有保護性..45
六、淋巴球粒線體DNA變異性與單碳代謝分子濃度相關性…..…46
七、淋巴球粒線體DNA大片段斷損可反映肝功能損傷指數...…46
八、高淋巴球粒線體DNA大片段斷損顯著增加肝癌罹患危險率47
九、受試者MTHFR C677T 基因多型性發生頻率…………....…48
十、MTHFR C677T基因多型性與肝癌罹患相關性…………..…49

第六章 結論……………………………………………………………50
參考文獻………………………………………………………………..81








表目錄
表一 、肝癌組受試者基本資料分析……………………………........51
表二、血清葉酸濃度與營養生化指標及單碳代謝分子的相關性…..53
表三、血清葉酸濃度與肝功能及肝細胞癌腫瘤進化程度的相關性..54
表四、血清同半胱胺酸濃度對營養生化指標及單碳代謝分子的相關55
表五、血清同半胱胺酸濃度對肝損傷指標與肝癌腫瘤進化的影響…56
表六、血清維生素B12濃度營養生化指標及單碳代謝分子的相關性57
表七、血清維生素B12濃度對肝損傷指標與肝癌腫瘤進化的影響…58
表八、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)與肝臟損傷指標之相關性………………………………………………………..59
表九、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)與肝腫瘤進化指標之相關性……………………………………………………..60
表十、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)與肝臟損傷指
GOT與GPT以及肝腫瘤指標AFP之相關性……………….61
表十一、單碳代謝生化分子 (葉酸、B12及同半胱胺酸)與肝腫瘤體積與腫瘤顆粒數之相關性…………………………………..…62
表十二、腫瘤進化參數與肝損傷指標之相關性………………..….…63
表十三、腫瘤進化參數與單碳代謝生化分子 (葉酸、B12及同半胱胺酸)、MTHFR C677T基因多型性之相關性…………….…64
表十四、MTHFR C677T基因多型性對肝腫瘤惡化之相對危險率影響....................................................................................65
表十五、血清葉酸濃度對肝癌進化之相對危險率影響……………..66
表十六、180位受試者基本資料分析…………………………………67
表十七、淋巴球粒線體DNA大片段斷損對營養生化指標及肝臟病變的相關性……………………………………………………..68
表十八、淋巴球粒線體DNA大片段斷損對肝功能指標及單碳代謝分子的相關性…………………………………………..………69
表十九、淋巴球粒線體DNA拷貝數對營養生化指標及肝臟病變的相關性………………………………………………..…………70
表二十、淋巴球粒線體DNA拷貝數對肝功能指標及單碳代謝分子的
相關性……………………………………………………..…71
表二十一、淋巴球粒線體DNA大片段斷損與肝功能指標相關性….72
表二十二、淋巴球粒線體DNA大片段斷損與單碳代謝分子濃度相關
性………………………………………………………..…73
表二十三、總體受試者、對照組與病例組內淋巴球粒線體DNA斷損
量與單碳代謝分子濃度、肝功能損傷指標與肝癌指標之相
關性……………………………………………………..…74
表二十四、使用複邏輯式回歸以淋巴球粒線體DNA變異預測HCC罹患率…………………………………………………..…75
表二十五、使用複邏輯式回歸以淋巴球葉酸濃度預測HCC罹患率…………………………………………………………..76
表二十六、使用複邏輯式回歸以血清葉酸濃度與維生素B12濃度預測
HCC罹患率………………………………………………77
表二十七、MTHFR C677T基因型分組間單碳代謝分子濃度、淋巴
球粒線體DNA變異與肝功能損傷指標相關性………...78
表二十八、淋巴球粒線體DNA大片段斷損與血清葉酸濃度交互作用
對肝癌罹患率的影響…………………………………..…79
表二十九、淋巴球葉酸濃度、血清維生素B12濃度與MTHFR C677T基因型對肝癌罹患率的影響…………………………..…80
Ahrendt SA, Sidransky D. The potential of molecular screening. Surg Oncol Clin N Am. 1999; 8: 641-56

Airoldi, M., Fantasia, R., Aloigi-Luzzi, D., Stefanetti, C., Desero, D. Chiodini, E. and Gobbi, A. (1987) Macrocytosis, megaloblastosis and folate status in chronic alcoholics. Minerva Medica 78, 739–743

Baker, H., Frank, O. and DeAngelis, B. (1987) Plasma vitamin B12 titres as indicators of disease severity and mortality of patients with alcoholic hepatitis. Alcohol and Alcoholism 22, 1–5

Balaghi M., Horne D.W., Wagner C. Hepatic one-carbon metabolism in early
folate deficiency in rats. Biochem J 1993; 291: 145-149

Bandera EV, Freudenheim JL, Marshall JR, Zielezny M, Priore RL, Brasure J, Baptiste M, Graham S. Diet and alcohol consumption and lung cancer risk in the New York State Cohort (United States). Cancer Causes Control. 1997;8: 828-40

Branda RF, McCormack JJ, Perlmutter CA, Mathews LA, Robison SH. Effects of folate deficiency on the metastatic potential of murine melanoma cells. Cancer Res 1988; 48: 4529-34.


Blok RB, Thorburn DR, Thompson GN, Dahl HH. A topoisomerase Ⅱ cleavage site is associated with a novel mitochondrial DNA deletion. Hum Genet. 1995; 95: 75-81.

Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate defi ciency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A 1997 ; 94 : 3290 – 5.

Bosy-Westphal A, Petersen S, Hinrichsen H, Czech NJ, Muller M Increased
plasma homocysteine in liver cirrhosis. Hepatol Res. 2001; 20: 28-38

Burgart LJ, Zheng J, Shu Q, Strickler JG, Shibata D. Somatic mitochondrial mutation in gastric cancer. Am J Pathol 1995; 147:1105-11

Baghurst PA, McMichacl AJ, Slavotinek AH, Baghurst KI, Boyle P, Walker AM.
A case-control study of diet and cancer of the pancreas. Am J Epidemiol 1991;
134:167-179

Brunaud I, Alberto JM, Ayav A, Gerard P, Namour F, Antunes L, Braun M,
Bronowicki J.P., Bresler L, Gueant J. L. Effects of vitamin B12 and folate deficiencies on DNA methylation and carcinogenesis in rat liver. Clin Chem
Lab Med 2003; 41: 1012-1219

Bailey LB, Gregory JF. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr 1999;129(5):919-22.

Branda RF, Brooks EM, Chen Z, Naud SJ, Nicklas JA. Dietary modulation of mitohcondrial DNA deletions and copy number after chemotherapy in rats. Mutat Res 2002; 501: 29-36

Biagini G, Pallotti F, Carraro S, Sgorbi G, Pich MM, Lenaz G, Anzivino F, Gualandi G, Xin D. Mitochondrial DNA in platelets from aged subjects. Mech Ageing Dev 1998; 101: 269-275

Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY, Ames BN. Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison. FASEB J 2004; 18: 209-11.

Cho E, Smith-Warner SA, Ritz J, van den Brandt PA, Colditz GA, Folsom AR, et al. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Int Med 2004 ; 140 : 603 – 13.

Chau GY, Chi CW, Li SH, Lui WY, Liu TY , Lee HC , Wei YH ,Wu YT, Yin PH. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 2004; 90:2390-6

Chou YC, Wu MH, Yu JC, Lee MS, Yang T, Shih HL, Wu TY, Sun CA. genetic polymorphism of the methylenetetrahydrofolate reducetase gene, plasma folate level and breast cancer susceptibility: a case-control study in Taiwan. Carcinogenesis 2006; 27:2295-2300.

Clifford AJ, Heid MK, Muller HG, Bill ND. Tissue distribution and prediction of
total body folate of rats. J Nutr 1990; 120: 1633-1639

Cherrick GR, Baker H, Frank O, Leevy, CM. Observations on hepatic avidity
for folate in Laennec’s cirrhosis. J Lab Clin Med 1965; 66: 446-451

Chen TC, Hsieh LL, Kuo TT, Ng KF, Wu Chou YH, Jeng LB, Chen MF. p16INK4 gene mutation and allelic loss of chromosome 9p21-22 in Taiwanese hepatocellular carcinoma. Anticancer Res. 2000; 20: 1621-6

Chen YM, Shiu JY, Tzeng SJ, Shih LS, Chen YJ, Lui WY, Chen PH. Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int J Cancer. 1998; 75: 787-93

Djalali, M., Champigneulle, B., Gueant, J. L., el Kholty, S., Gerard, P.
and Nicolas, J. P. (1988) Increased serum corrinoids correlates with
disease severity and IgA levels in alcoholic cirrhosis. Digestion
41, 215–222.

Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate
deficiency on DNA stability. J Nutr 2002; 132: 2444S-2449S

Eichner ER, Hillman RS.The evolution of anemia in alcoholic patients. Am J
Med 1971; 50: 218-232

Ferre N, Gomez F, Camps J, Simo JM, Murphy MM, Fernandez BJ, Joven J.
Plasma homocysteine concentrations in patients with liver cirrhosis. Clin Chem
2002; 48: 183-185

Franco RF, Simões BP, Tone LG, Gabellini SM, Zago MA, Falcão RP. The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol. 2001; 115: 616-8.

Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000; 287: 2017-9

Giovannucci E. Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 2002 ; 132 (8 Suppl) : 2350S – 5S.

Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, Willett WC. Alcohol, low-methionine – low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 1995 ; 87 : 265 – 73.

Giovannucci E, Stampfer MJ, Colditz GA, Rimm EB, Trichopoulos D, Rosner BA, et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst 1993 ; 85 : 875 – 84.

Goldman, P. A., Jankowski, C. B. and Drum, D. E. (1979) A sex difference in the serum vitamin B12 levels of hospitalised alcoholics. Currents in Alcoholism 5, 237–249.

Goodman MT, McDuffie K, Hernandez B, Wilkenes LR, Selhub J Case-control
study of plasma folate, homocysteine, vitamin B12, and cysteine as markers of
cervical dysplasia. Cancer 2000; 89: 376-382

Ghoshal AK, Farber E.The induction of liver cancer by a dietary deficiency of
choline and methionine without added carcinogens. Cancer Res. 1984; 5:
1367-1370

Gu L, Wu J, Qiu L, Jennings CD, Li GM. Involvement of DNA mismatch repair in folate deficiency-induced apoptosis small star, filled. J Nutr Biochem. 2002; 13: 355-63

Hsieh RH, Hou JH, Hsu HS, Wei YH. Age-dependent respiratory function decline and DNA deletion in human muscle mitochondria. Biochem Mol Bio Int 1994; 32: 1009-1022

Ho PI, Ashline D, Dhitavat S, Ortiz D, Collins SC, Shea TB, Rogers E. Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiol Dis 2003; 14: 32-42.

Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717-719

He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM. Detection and quantification of mitochondrial DNA deletion in individual cells by real-time PCR. Nucleic acids Res. 2002; 30:e68.

Heijmans BT, Bore JM, Suchiman HE, Cornelisse CJ, Westendorp RG, Kromhout D, Feskens EJ, Slagboom PE. A common variant of the methylenetetrahydrofolate reducetase gene (1p36) is associated with an increased risk of cancer. Cancer Res 2003; 63:1249-1253.

Himmerich H, Anghelescu I, Klawe C, Szegedi A Vitamin B12 and hepatic enzyme serum levels correlate in male alcohol-dependent patients. Alcohol Alcohol. 2001; 36:26-8.

Hou JH and Wei YH. The unusual structures of the hot-regions flankin
large-scale deletions in human mitochondrial DNA. Biochem J. 1996 15; 318: 1065-70.

Huang RF, Ho YH, Lin HL, Wei JS, Liu TZ. Folate deficiency induces a cell cycle-specific apoptosis in HepG2 cells. J Nutr. 1999; 129: 25-31

Huang RFS, Hsu YC, Lin HL, Yang FL Folate depletion and elevated plasma
homocysteine promote oxidative stress in rat livers. J Nutr 2001; 131:33-38

James SJ, Pogribny IP, Pogribna M, Miller BJ, Hernigan S, Melnyk S.
Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in
the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr 2003; 133: 3740S-3747S

James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 1999; 70: 495-501.

Jencks DA and Mathews RG. Allosteric inhibition of methylenetetrahydrofolate reducetase by adenosylmethionine. Effect of adenosylmethionine and NADPH on the equilibrium between active and inactive forms of the enzyme and on the kinetics of approach to equilibrium. J Biol Chem 1987; 262:2485-2493.

Kao CS (郭常勝) (2003) Relationships between vitamin status, plasma
homocysteine and hepatitis in Taiwanese population. Master thesis.
Department of Nutrition and Food Sciences, Fu-Jen University,

Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ, Mason JB. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr. 1997; 65: 46-52

Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ, Mason JB.
Folate deficiency in rats induces DNA strand breaks and hypomethylation
within the p53 tumor suppressor gene. Am J Clin Nutr 1997; 65:46-52

Kotake K, nonami T, Kurokawa T, Nakao A, Murakami T, Shimomura Y. Human livers with cirrhosis and hepatocellular carcinoma have less mitochondrial DNA deletion than normal human livers. Life Science 1999; 64: 1785-1797

Kubo S, Nishikawa M, Hirohashi K, Tanaka H, Shuto T, Tamori A, Kinoshita H, Inoue M, Nishiguchi S. Multicentric occurrence of hepatocellular carcinoma in patients with a somatic mutation of mitochondrial DNA and hepatitis C virus. Hepatol Res 2003; 25: 78-82

Kao SH, Liu CS, Wang SY, Wei YH. Ageing-associated large-scale deletions of mitochondrial DNA in human hair follicles. Biochem Mol Biol Intern 1997; 42: 285-298

Kim UK, Kim HS, Oh BH, Lee MM, Kim SH, Chae JJ, Choi HS, Choe SC, Lee CC, Park YB. Analysis of mitochondrial DNA deletions in four chambers of failing human heart: hemodynamic stress, age, and disease are important factors. Basic Res Cardiol 2000; 95: 163-171

Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y. role of MTHFR genetic polymorphism in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004; 103:252-257.

Kim YI, Pogribny IP, Salomon RN, Choi SW, Smith DE, James SJ, et al.
Exon-specifi c DNA hypomethylation of the p53 gene of rat colon Induced by dimethylhydrazine. Modulation by dietary folate. Am J Pathol
1996 ; 149 : 1129 – 37.
Kane SP, Murray-Lyon IM, Paradinas FJ, Johnson PJ, Williams R, Orr AH, Kohn J. Vitamin B12 binding protein as a tumour marker for hepatocellular carcinoma. Gut. 1978;19:1105-9.

Kanai T, Takabayashi T, Kawano Y, Kuramochi S, Miyazawa N. A case of postoperative recurrence of fibrolamellar hepatocellular carcinoma with increased vitamin B12 binding capacity in a young Japanese female. Jpn J Clin Oncol. 2004; 34:346-351

Knock E, Deng L, Wu Q, Leclerc D, Wang XL, Rozen R. Low dietary folate initiates intestinal tumors in mice, with altered expression of G2-M checkpoint regulators polo-like kinase 1 and cell division cycle 25c. Cancer Res. 2006; 66: 10349-56.

La Vecchia C, Ferraroni M, D’Avanzo B, Decarli A and Franceschi S. Selected
micronutrient intake and the risk of gastric cancer. Cancer Epidemiol
Biomarkers Prev 1994; 3:393-398

La Vecchia C, Braga C, Negri E, Franceschi S, Russo A, Conti E, Falcini F,
Giacosa A, Montella M, Decarli A. Intake of selected micronutrients and risk of
colorectal cancer. Int J Cancer 1997; 73:525-530

Levi F, Pasche C, Lucchini F, Vecchia CL. Dietary intake of selected
micronutrients and breast-cancer risk. Int J Cancer 2001; 91: 260-263

Little J, Sharp L, Duthie S, Narayanan S. Colon cancer and genetic variation in folate metabolism: the clinical bottom line. J Nutr 2003; 133: 3758S-3766S

Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet. 2000; 355: 299-304

Lee HC, Wei YH. Mitochondrial role in life and death of the cell. J Biomed Sci. 2000; 7: 2-15

Lee HC, Lim MLR, Lu CY, Liu VWS, Fahn HJ, Zhang C, Nagley P, Wei YH.Concurrent increase of oxidative DNA damage and lipid peroxidation together with mitochondrial DNA mutation in human lung tissues during aging-smoking enhances oxidative stress on the aged tissues. Archives Biochem Biophy 1999; 362: 309-306

Li GM, Presnell SR, Gu L. Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem. 2003; 14: 568-75.

Li MS, Li PF, Chen Q, Du GG, Li G. Alpha-fetoprotein stimulated the expression of some oncogenes in human hepatocellular carcinoma Bel 7402 cells. World J Gastroenterol 2004; 10 :819-24.

Liu VWS, Zhang C, Pang CY, Lee HC, Lu CY, Wei YH, Nagley P. Independent occurrence of somatic mutations in mitochondrial DNA of human skin form subjects of various ages. Hum Mutat 1998; 11: 191-196

Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res 1999; 423: 11-21

Langsenlehner U, Krippl P, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Weitzer W, Samonigg H. The common 677C>T gene polymorphism of methylenetetrahydrofolate reductase gene is not associated with breast cancer risk. Breast Cancer Res Treat 2003; 81: 169-72

Lambert D, Benhayoun S, Adjalla C, Gelot MM, Renkes P, Gerard P, Felden F, Belleville F, Gaucher P, Gueant J L, Nicolas J P. Alcoholic cirrhosis and cobalamin metabolism. Digestion 1997; 58, 64–71

Linnell JC, Quadros EV, Matthews DM, Morris HP, Poirier LA. Altered cobalamin distribution in rat hepatomas and in the livers of rats treated with diethylnitrosamine. Cancer Res. 1977; 37: 2975-8.

Morgan AG, Kelleher J, Walker BE, Losowsky MS.Nutrition in cryptogenic
cirrhosis and chronic aggressive hepatitis. Gut 1976; 17: 113-118

Mikol Y B, Hoover KL, Creasia D, Poiner LA Hepatocarcinogenesis in rats fed
methyl-deficient, amino acid-defined diets. Carcinogenesis 1983; 4: 1619-1629

Majumdar SK, Shaw GK, O'Gorman P, Aps EJ, Offerman EL, Thomson AD. Blood vitamin status (B1, B2, B6, folic acid and B12) in patients with alcoholic liver disease. Int J Vitam Nutr Res. 1982; 52:266-71.

Meyer KA, Conigrave KM, Chu NF, Rifai N, Spiegelman D, Stampfer MJ, et al. Alcohol consumption patterns and HbA1c, C-peptide and insulin concentrations in men. J Am Coll Nutr 2003 ; 22 : 185 – 94.

Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST, Plass C. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene. 2003; 22: 6319-31

Narayanan S, McConnell J, Little J, Sharp L, Piyathilake CJ, Powers H, Basten G, Duthie SJ. Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev. 2004; 13: 1436-43.

Nishikawa M, Nishiguchi S, Shiomi S, Tamori A, Koh N, Takeda T, Kubo S, Hirohashi K, Kinoshita H, Sato E, Inoue M. Somatic mutation of mitochondrial DAN in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Res 2001; 61: 1843-1845

Okochi O, Hibi K, Uemura T, Inoue S, Takeda S, Kaneko T, Nakao A. Detection of mitochondrial DNA alterations in the serum of hepatocellular carcinoma patients. Clin Cancer Res 2002; 8: 2875-2878

Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop SJ, Melton JV, Pang CY, Wei YH, Murphy MP. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem 1998; 257: 192-201.

Pogribny IP, James SJ, Jernigan S, Pogribna M. Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res. 2004; 548: 53-9

Pogribny IP, James SJ. De novo methylation of the p16INK4A gene in early
preneoplastic liver and tumors induced by folate/methyl deficiency in rats.
Cancer Lett. 2002; 187: 69-75

Penta JS, Johnson FM, Wachsman JT, Copeland WC. Mitochondrial DNA in human malignancy. Mutat Res. 2001; 488: 119-33

Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. Somatic mutations of the mitochondrial gemone in human colotectal tumours. Nat Genet 1998; 20: 291-290

Paradinas FJ, Melia WM, Wilkinson ML, Portmann B, Johnson PJ, Murray-Lyon IM, Williams R. High serum vitamin B12 binding capacity as a marker of the fibrolamellar variant of hepatocellular carcinoma. Br Med J (Clin Res Ed). 1982 ;285:840-2

Retief FP, Huskisson YJ. Serum and urinary folate in liver disease. Brit Med J
1969; 2:450-452

Ross OA, Hyland P, Curran MD, McIlhatton BP, Wikby A, Johansson B, Tompa A, Pawelec G, Barnett CR, Middleton D, Barnett YA. Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Experi Gerontol 2002; 37: 329-340

Ryan BM, Molloy AM, McManus R, Arfin Q, Kelleher D, Scott JM, Weir DG. The methylenetetrahydrofolate reductase (MTHFR) gene in colorectal cancer: role in tumor development and significance of allelic loss in tumor progression. Int J Gastrointest Cancer 2001; 30: 105-11.

Rachmilewitz M, Aranovitch J, Grossowicz N. Serum concentrations of vitamin B12 in acute and chronic liver disease. Journal of Laboratory and Clinical Medicine 1956; 48: 339–344

Shao WX, Peng DX, Lu JH, Wei DP, Liu YL, Liu XF. Construction of recombinant fowlpox virus expressing chicken IL-2 and assay of biologic activity of the product in vitro. Sheng Wu Gong Cheng Xue Bao. 2004; 20: 136-9.

Saffroy R, Pham P, Chiappini F, Gross-Goupil M, Castera L, Azoulay D, Barrier A, Samuel D, Debuire B, Lemoine A. The MTHFR 677C>T polymorphism is asscociated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis 2004; 25:1443-1448.

Sibani S, Melnyk S, Pogribny IP, Wang W, Hiou-Tim F, Deng L, Trasler J, James SJ, Rozen R. Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis. 2002; 23: 61-5

Slattery ML, Potter JD, Samowitz W, Schaffer D, Leppert M. methylenetetrahydrofolate reducetase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 1999; 8:513-518.

Smith OP, Hann IM, Woodward CE, Brockington M. Pearson’s marrow/ pancreas syndrome: haematological features associated with deletion and duplication of mitochondrial DNA. Br J Haematol 1995; 90: 469-472

Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 1989; 86: 7952-7956.

Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, Hirai M, Hirai A, Chiba M, Kasuga S, Akai H, Toyota T. Oxidative damage to mitochondrial DNA and its relationship to diabetic complication. Diabet Res Clin Pract 1999; 45: 161-168.

Tkaczewski W, Niedzielska H, Malafiej E, Dworniak D, Dramiski M. Studies of
serum folic acid level in patients with viral hepatitis. Polish Med J 1971; 10:
1081-1084

Upchurch GRJ, Welch GN, Fabian AJ, Freedman JE, Keaney JF J, Loscalzo J. Homocysteine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Bio Chem. 1997; 272:17012-17017.

Von Wurmb N, Oehmichen M, Meissner C. Demonstration of the 4977 bp deletion in human mitochondrial DNA from intravital and postmortem blood. Mutat Res 1998; 422: 247-254

Wang H, Fliegel L, Cass CE, Penn AM, Michalak M, Weiner JH, Lemire BD.
Quantification of mitochondrial DNA in heteroplasmic fibroblasts with
competitive PCR. Biotechniques 1994; 17: 76-78, 80, 82.

Wu A, Chanarin I, Slavin G, Levy AJ Folate deficiency in the alcoholic – Its
relationship to clinical and haematological abnormalities, liver disease and
folate stores. Br J Haematol 1975; 29: 469-478

Wallace DC, Lott TM, Lezza AMS, Seibel P, Voljavec AS, Shoffner JM. Mitochondrial DNA mutations associated with neuromuscular diseases: analysis and diagnosisusing the polymerase chain reaction. Pediatr. Res 1990; 28: 525-528

Wang LY, Chen CJ, Zhang YJ, Tsai WY, Lee PH, Feitelson MA, Lee CS, Santella RM. 4-Aminobiphenyl DNA damage in liver tissue of hepatocellular carcinoma patients and controls. Am J Epidemiol. 1998; 147: 315-23

Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem 2003; 17: 40778-87.

Wheelhouse NM, Lai PBS, Wigmore SJ, Ross JA, Harrison DJ. Mitochondrial D-loop mutations and deletion profiles of cancerous and noncancerous liver tissue in hepatitis B virus-infected liver. British J Nutr. 2005; 92:1268-1727.

Whittemore A, Wu-Williams A, Lee M. Alcohol, physical activity, and other risk factors for colorectal cancer: a prospective study. J Natl Cancer Inst 1990 ; 82 : 915 – 26.

Yang HI, Lu SN, Liaw YF, You SL,Sun CA, Wang LY, Hsiao CK, Chen PJ, Chen
CJ. Taiwan commumity-based cancer scereening project group. Hepatitis B
antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;
347:168-174

Yeh JJ, Lunetta KL, van Orsouw NJ, Moore FD, Jr. Mutter GL, Vijg J, Dahia PL, Eng C. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNa sequence variants in cases with thyroid tumours. Oncogene 2000; 13: 2060-2066

Yamamoto H, Tanaka M, katayama M, Obayashi T, Nimura Y, Ozawa T. Significant existence of deleted mitochondrial DNA in cirrhotic liver surrounding hepatic tumor. Biochem Biophys Res Commun 1992; 182: 913-920

Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY, Wei YH, Liu TY, Chi CW. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. British J Nutr. 2004; 90: 2390-2396.


Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997; 94: 514-9.

Zhu ZZ, Cong WM, Liu SF, Xian ZH, Wu WO. A study on the asscociation of MTHFR C677T polymorphism with genetic susceptibility to hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi 2006; 14:196-198.

Zhou, Y. J., Liang, M. Y. and Zhang, X. Q. (1992) Changes in serum
folic acid and vitamin B12 levels in liver cirrhosis and its clinical
significance. Chung Hua Nei Ko Tsa Chih 30, 625–627.

張純敏 (2004) 葉酸營養狀態對大白鼠肝臟粒線體基因斷損,功能性及氧化傷害
的影響。碩士論文 輔仁大學食品營養學系

周宜芳 (2006)葉酸缺乏促進年輕大鼠組織老化指標粒線體DNA大片段斷損累積及其相關機制。輔仁大學食品營養學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top