[1] 姚志成,「運用資料探勘技術建構脂肪肝預測模式」,中原大學資訊管理研究所碩士論文,民國九十三年。[2] 廖介銘,「決策樹應用於糖尿病之探勘」,華梵大學資訊管理研究所碩士論文,民國九十二年六月。[3] 吳國禎,「資料探索在醫學資料庫之應用」,中原大學醫學工程研究所碩士論文,民國八十八年。[4] 蕭方智,「應用階層式粒子群方法於模糊決策樹之研究」,元智大學工業工程與管理研究所碩士論文,民國九十四 年七 月。[5] 陳麗君,「應用資料探勘技術於信用卡黃金級客戶之顧客關係管理」,元智大學工業工程與管理研究所碩士論文,民國九十二年六月。[6] 林芝儀 ,「應用資料探勘於信用卡授信決策模式之實證研究」,元智大學工業工程與管理研究所碩士論文,民國九十一年。[7] 葉怡成,類神經網路模式應用與實作,儒林出版社,民國九十二年。
[8] 陳昭蓉,「以倒傳遞類神經網路作為規劃震災後災民疏散系統之應用」,國立台北科技大學建築與都市設計研究所碩士論文,民國九十三年七月。[9] 施怡如,「虛擬智慧型顧客服務模式在電子商務之應用---以襯衫為例」,東海大學工業工程研究所碩士論文,民國八十九年六月。[10]李文智,「以總體經濟變數與存託憑證探討對標的股股價預測模式影響之研究-以台積電為例」,大葉大學國際企業管理研究所碩士論文,民國九十五年二月。[11]王進德、蕭大全,類神經網路與模糊控制理論入門,全華科技圖書,民國九十三年九月,第23-58頁。
[12]賴威利,「利用約略集合理論預測燒燙傷患者死亡率」,南台科技大學國際企業研究所碩士論文,民國九十四年七月。[13]李慧慈,「利用約略集合理論預測網路銀行使用意願」,南台科技大學國際企業研究所碩士論文,中華民國九十三年六月。[14]Weiss G. M., and Provost F., 「The Effect of Class Distribution on Classifier Learning, 」 Technical Report ML-TR-43, Department of Computer Science, Rutgers University, 2001.
[15]Zhou Zhi-Hua, and Liu Xu-Ying, 「Training Cost-Sensitive Neural Network with Methods Addressing the Class Imbalance Problem」 IEEE Transactions on Knowledge and Data Engineering, Vol. 18, NO. 1, 2006.
[16]Li Jin, Li Xiaoli, and Yao Xin, 「Cost-Sensitive Classification with Genetic Programming,」 Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Vol.3, pp. 2114-2121.
[17]Ling C., and Li C., 「Data mining for direct marketing: Problems and solutions,」 Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI Press, 1998, pp. 73-79.
[18]Kubat M., and Matwin S., 」Addressing the curse of imbalanced training sets: One-sided selection,」 Pro-ceedings of the Fourteenth International Conference on Machine Learning., San Francisco, CA: Morgan Kaufmann, 1997, pp. 179-186.
[19]Chawla N. V., Bowyer K. W., Hall L. O., and Kegelmeyer W. P., 「SMOTE: Synthetic Minority Over-sampling Technique,」 Journal of Articial Intelligence Research, 16, 2002, pp.321-357.
[20]Quinlan J. R., 「Improved Use of Continuous Attributes in C4.5,」 Journal of Artificial Intelligence Research, 4, 1996, pp. 77-90.
[21]Quinlan J. R., 「Induction of Decision Trees」, Machine Learning, 1, 1986, pp. 81-106.
[22]Quinlan J. R., C4.5: Programs for Machine Learning, Morgan Maufman, San Francisco, CA, USA, 1993.
[23]Vapnik V. N., 「The Nature of Statistical Learning Theory,」 Springer Verlag, NY, USA, 1995.
[24]Burges C. J. C., 「A Tutorial on Support Vector Machines for Pattern Recognition,」 Data Mining and Knowledge Discovery, Vol.2, No.2, 1998, pp. 955-974.
[25]Scholkopf B., Burges C. J. C., Smola A. J., 」Introduction to Support Vector Learning,」 Advances in kernel methods: support vector learning, MIT Press, Cambridge, MA, USA, 1999, pp.1-15.
[26] Fletcher R., Practical Methods of Optimization, John Wiley and Sons Inc., 2nd edition, 1987.
[27]Gunn S. R., 「Support Vector Machines for Classification and Regression,」 University of Southampton Technical Report, 1998.
[28]Hsu Chih-Wei, Chang Chih-Chung, and Lin Chih-Jen, 「A Practical Guide to Support Vector Classification,」 Available: http://www.csie.ntu. edu.tw/~cjlin/papers/guide/guide.pdf,2003.
[29]Pawlak Zdzislaw, Rough Sets – Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, 1991.
[30]Pawlak Zdzislaw, 「Rough sets and intelligent data analysis,」 Information Sciences, Vol. 147, 2002, pp.1-12.
[31]Walczak B., and Massart D. L., 「Tutorial Rough Sets Theory,」 Chemometrics and Intelligent Laboratory Systems, Vol. 47, 1999, pp.1-16.
[32]Slowinski R., Zopounidis C., and Dimitras A.I., 「Prediction of Company acquisition in Greece by means of the rough set approach,」 European Journal of Operation Research, Vol. 100, 1997, pp. 1-15.