跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹祥麟
研究生(外文):JAN SHIANG LING
論文名稱:應用資料探勘技術於顧客區隔行銷之研究-以美髮連鎖業為例
論文名稱(外文):A Study on the Customer Segmentation and Marketing by Data Mining Approach: Hair Stylist Chain Stores as Example
指導教授:薛友仁薛友仁引用關係
學位類別:碩士
校院名稱:華梵大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:100
中文關鍵詞:顧客區隔行銷資料探勘美髮連鎖業層級分析法
外文關鍵詞:Customer SegmentationHair Stylist Chain StoresData MiningAnalytic Hierarchy Process
相關次數:
  • 被引用被引用:6
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
根據「2006台灣連鎖店年鑑」調查報告,美髮連鎖總部家數去年以來大幅成長,但是每家連鎖總部平均連鎖店數成長卻趨緩,顯示出該市場已趨於飽和而且競爭激烈。因此,美髮連鎖業者除了強化服務品質及提升技術外,較常見的是運用大量行銷策略來吸引顧客。然而美髮連鎖業面對數量龐大的顧客群,若能精確區隔出不同類型的顧客,再給予適當的行銷模式,必定能增加顧客獲利性、提高企業利潤、進而保持優勢競爭力。
本研究資料來源為國內某家美髮連鎖體系,2002年至2004年16家分店之POS系統交易記錄。先經過資料前置處理階段之資料清理、整合、縮減等階段後得到「顧客基本資料」、「顧客消費明細」、「分店基本資料」, 3大類17個屬性共487筆實際有效資料集。
本論文研究,將經由資料前置處理後之資料集,先使用資料探勘群集分析方法中的自我組織映射類神經網路 (SOM) 結合K-means之兩階段分群演算法,得到最佳顧客集群數為4個分群,再使用資料探勘分類分析方法中C4.5決策樹演算法以分群結果為目標值,明確找出各群顧客所具有的特性法則。而為了進一步分析瞭解何種行銷模式較哪一類型顧客所接受,先應用層級分析法(AHP),以行銷組合4P即「服務」、「價格」、「促銷」、「地點」等為分析構面;並透過文獻整理、企業文件分析建立準則,再編製顧客AHP問卷進行調查分析,以制定出符合美髮連鎖業顧客區隔之最佳行銷策略建議。
According to the “Annual Report of Taiwanese Store Chains in 2006,” the total number of hair salon headquarters has been increasing rapidly at a considerable amount since last year. However, the average stores for each headquarter have experienced an extremely slow growth. The above statistics shows that the hair salon market has been getting saturated and more competitive. Therefore, instead of enhancing service quality and strengthening skills, hair salon store chains frequently utilize a variety of marketing strategies to attract customers. Due to the huge amount of customers, if they can make precise segmentation and craft suitable marketing models for each segment of customers, they can certainly increase the numbers of customers, gain more revenue, and maintain their competitiveness as well.

The research is based on a collection of POS transaction records of 16 branches from 2002 to 2004, which is provide by an anonymous hair salon headquarter. After going through data cleaning, aggregation, and reduction in the first stage of data processing, the “customer basic information,” “customer spending details” and “branch basic information” are obtained, that is an effective dataset contains three categories, 17 attributes, or 487 records in total.

Based on the above dataset, the research yielded the best 4 clusters via a two-stage clustering algorithm that includes Self-Organizing Map (SOM) Neural Network of clustering analysis in data mining and K-means. Following with the C4.5 decision tree algorithm of classification method in data mining, the study found out the characteristics for each cluster of customers.


Furthermore, to understand the appropriate marketing models for each group, the study applied AHP (Analytic Hierarchy Process) from the aspect of Four Ps, including Product, Pricing, Promotion, and Placement, and set up criteria through literature review and the analysis of enterprise documents. Finally, a copy of professional questionnaire was created to undertake the survey, as well as to make the optimal marketing strategies for the target customers of the hair salon store chain
誌謝……..…………………………..………………………………….. I
摘要………………………………..…………………………….………..II
Abstract…………………………………..……………………………. ..III目錄………………………………….…………………………………..IV
表錄………………….…………………………………………………..VI
圖錄……………………………………………………………………..VII
一、緒論…………….………………………………………………….. 13
1.1研究背景與動機…….………...…………..…………………..…13
1.2研究目的…………………………………………………………14
1.3研究流程……………………………………………..…………..15
二、文獻探討……………………………………………………………18
2.1美髮連鎖業概述………………………………………..………..18
2.2顧客關係管理………………………………………………..…..21
2.3市場區隔及行銷理論……………………………………....……25
2.3.1市場區隔意義…………………………………………….25
2.3.2市場區隔基礎…………………………………………….25
2.3.3市場區隔步驟…………………………………………….26
2.3.4行銷策略組合…………………………………………….27
2.4資料探勘……………………………………………………….....30
2.4.1自我組織映射類神經網路……………………………33
2.4.2決策樹 ……………………………………………………36
2.4.3兩階段分群法(SOM+K-means)……………………………40
2.5層級分析法……………………………………………………..... 43
三、研究方法……………………………………………………….…..46
3.1研究架構………………………………………………………... 46
3.2資料前處理.…………..………………………………………… 49
3.2.1資料淨化...…..……….……………………………………50
3.2.2資料整合…………….…………………………………… 51
3.2.3資料轉換………….……………………………………… 51
3.3兩階段分群法(SOM+K-means)……………………..……….…..54
3.4決策樹分析………………………………………....…………...56
3.5AHP分析及專家問卷…….………………………....…………....58
3.5.1目標構面…………………………………………………..59
3.5.2行銷策略評量準則…………………………………..……59
3.5.3層級分析………………………………………………..…59
四、研究結果分析…………………………………….............................63
4.1 SOM+K-means分群結果分析…………………………………63
4.2決策樹法則分析………………………………………………...64
4.3分群顧客命名…………………………………………………...67
4.4問卷回收結果…………………………………………………...68
4.5問卷結果分析…………………………………………………...70
4.5.1各層級權重值計算結果…………………………………..71
4.5.2整體層級權重值計算結果………………………………..81
五、結論與建議…………………………………………..…………….85
5.1結論……………………………………………………………...85
5.2研究限制………………………………………………………...88
5.3後續研究建議…………………………………………………...89
參考文獻………………………………………………………..………..90
附錄A…………………………………………………………………….91
[1]Frawley,Frawley, W.J.G.S. Paitetsky and C.J.Matheus, Knowledge Discovery in database:An Overview,Knowledge Discovery in Database, AAAI Press, Menlo Park, CA,1991
[2]Cabena,Cabena,P.P.O. Hadjinian, R. Stadler, J. Verhess and A. Zanasi , Discovering Data Mining from Concept to implementation, Prentice Hall, New York, NY,1997
[3]Jiawei Han & Micheline Kamber, “ Data mining Concepts and Techniques ” San Francisco : Morgan Kaufmann Publishers ,2001
[4]Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R., Advances in knowledge discovery and data mining, Menlo Park, CA: AAAI Press.,1996
[5]Wendell, R. S., “Product Differentiation and Market Segmentation as Alternative Marketing Strategies”, Journal of Marketing, vol.21, pp.3-8. .,1956
[6]Kotler, Philip, Marketing Management, 10th ed. ,NJ: Prentice-Hall Inc….,2000
[7]Quinlan, J.R., C4.5: Programs For Machine Learning, Morgan, San Mateo, CA, 1993
[8]J. Vesanto, E. Alhoniemi, “Clustering of the Self-Organizing Map”, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO.3, 2000
[9]Tae K. S., Namsik C., and Gunhee L., “Dynamics of Modeling in Data Mining: Interpretive Approach to Bankruptcy Prediction,” Journal of Management, Vol.16, No.1, pp.63-85, 1999.
[10]Kuo, R. J., Ho L. M., and Hu, C. M., “Integration of Self-Organizing Feature Map and K-means Algorithm for Market Segmentation,” Computer & Operations Research, Vol. 29, pp. 1475-1493.,2002
[11]Thomas, D.R.E, Strategy’s Different in Service Industries,Harvra Business Review,ul.-Aug., P.60.,1978
[12]E.Jerome McCarthy Basic Marketing:A Managerial Approach , Homewood I11 : Richard D.Irwin .,1960
[13]Booms, B. H. & Bitner, M. J. . Marketing Strategies and Organization Structures for Service Firms, in Donelly, J. H. &George, W. R. (eds), Marketing of Services,Chicago: American Marketing Association. ., 1981
[14]Mannila H., Toivonen H., and Verkamo A. I., “Discovering Frequent Episodes in Sequences,” KDD’95, pp. 210-215, Montreal, Canada, Aug. ., 1995
[15]Tae K. S., Namsik C., and Gunhee L., “Dynamics of Modeling in Data Mining:
[16]Saaty,T.L.,The Analytic Hierarchy Process, New York;McGraw Hill Inc.,1980
[17]Zineldin, M., “Bank-Company Interaction and Relationship: Some Empirical
Evidence,” International Journal of Bank Marketing, Vol. 13, No. 2, pp.30-40. , 1995
[18]Esposito, F.& Malerba, D.& Semeraro, G.,” A Further Study of Pruning Methods in Decision Tree Induction,” Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, pp.211-218, 1995.
[19]Frank, E., “Pruning Decision Trees and Lists,” Department of Computer Science, University of Waikato, Hamilton, New Zealand, 2000.
[20]Windeatt T.& Ardeshir G., “An empirical comparison of pruning methods for ensemble classifiers,” Proceedings of the 4th International Conference on Advances in Intelligent Data Analysis, Vol.2189, pp.208-217, 2001.
[21]台灣連鎖暨加盟協會,「2006連鎖店年鑑」,台北:台灣連鎖暨加盟協會,2006。
[22]賴孝義,一開始就做對事情曼都企業38年成功錦囊,台北:農學社,2004。
[23]賴志郎,「消費者服務轉換過程選擇模式之研究-以美髮業為例」,國立高雄第一科技大學行銷與流通管理系碩士論文,2003。
[24]鄧振源、曾國雄,層級分析法(AHP)的內涵特性與應用(上),中國統計學報,第27 卷,第6 期,pp.5-22,1989。
[25]張沛元譯,行銷區隔戰法,初版,台北:商周。譯自 Weber, H.(1998), Divide andconquer,1999。
[26]鄧振源、曾國雄,層級分析法(AHP)的內涵特性與應用(下),中國統計學報,第27 卷,第7 期,pp.1-20,1989。
[27]蘇守謙,CRM 從顧客價值分析開始,能力雜誌,六月號,頁138-143,2001。
[28]葉怡成,類神經網路模式應用與實做,台北市,儒林,1994。
[29]劉文良、湯宗泰,「顧客關係管理導論與應用」,全華書局,台北,2002 。
[30]蔡獻富,「以兩階段資料採礦分群方法應用於顧客關係管理和獲利評估之實證研究」,國立台灣科技大學,2001。
[31]張鈺珮,「以資料探勘技術進行電子行銷區隔基礎研究」,長庚大學,2003。
[32]胡同來,「應用類神經網路於證券業網路下單市場之區隔」,國立台北科技大學,2001。
[33]戚立強,「銀行業顧客關係管理之市場區隔研究--以現金卡為例」,國立台北科技大學,2001。
[34]薛主堅,「渡假生活型態於澎湖旅遊市場區隔之研究」,國立台北科技大學,2001。
[35]鍾文杰,「整合自組織映射圖網路與遺傳演算法為輔之K-Means於顧客關係管理中」,國立台北科技大學,2000。
[36]謝安晉,「決策樹技術應用於美髮業直效行銷之研究」,大葉大學,2004。
[37]莊琇媚,「服務品質與顧客滿意度關係之研究-以姿也髮型連鎖店為例」,國立高雄師範大學,2006。
[38]陳淑方,「台灣美髮連鎖體系應用資訊科技提昇經營管理效益之探討」,國立臺灣大學,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top