(3.236.231.14) 您好!臺灣時間:2021/04/15 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:辛淑儀
研究生(外文):Shi I Hsin
論文名稱:操作參數對質子交換膜燃料電池性能及局部電流分佈之影響
論文名稱(外文):Effect of operating parameters on cell performance and local current density of PEM fuel cells
指導教授:顏維謀顏維謀引用關係
指導教授(外文):Wei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:質子交換膜燃料電池局部電流量測交錯式流道
外文關鍵詞:PEM fuel cellslocal current densityinterdigitated flow channel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
研究係以實驗量測方法,探討直通型交錯式流道設置方式,對質子交換膜燃料電池之性能及局部傳輸現象之影響。局部電流量測之原理利用電路板法量測燃料電池內部電流分佈情形,於燃料電池之極板與集電板間側插入局部電流量測板。此電流量測板透過磁力量測轉換訊號至USB介面,再傳輸電腦作資料收集後繪製成圖。在實驗量測部分,本研究量測各種操作條件時的I-V性能曲線外,亦量測燃料電池內部詳細局部電流密度。
實驗結果顯示,隨著流量增加,平均電流密度提升,局部電流密度也會隨之增加。在相同溫度設定下,局部電流密度隨流量之增加而增加。然而在流量增加時,流道末端也因液態水累積,堵塞陰極氣體擴散層,造成傳輸阻抗增加。在相同流量時電池溫度提升,隨著電池溫度由50℃增加至70℃,由於質子交換膜中的水含量不足,造成離子傳輸阻抗增加,電池性能也隨著電池溫度增加而趨於不穩定。隨著電池加濕溫度增加,質子交換膜中水含量也隨之增加,在低加濕溫度下,足夠與電池溫度達到平衡,而有最佳的操作條件。然而在高加濕溫度下,電池易有水氾濫之影響。局部電流分佈發現流量對於液態水累積有ㄧ定之影響,而電池溫度方面,可發現在電池溫度越高之情況下,局部電流密度分佈有不平均之效應。在本論文中,氣體流量效應以1300sccm對電池性能有最佳之影響,電池溫度則以60℃為最佳。
This thesis aims to experimentally measure the cell performance and local current density distributions of PEM fuel cells with staggered flow channel design. The local current density is measured with the sensor plate to detect the interior current distribution by printed circuit board technology. After the sensor plate transfers the magnetic signal to computer by USB interface, the collected data was analyzed and plotted. In this work, the I-V performance and detail local current density distributions under different operating conditions were presented. The experimental results show that the cell performance and local current density increase with an increase in the fuel flow rate. When the cell temperature increases form 50℃to 70℃ with fixed fuel flow rate, the effects of cell temperature on the cell performance become irregular due to the insufficient water content and large ion transfer impedance. Better cell performance and local current density are noted for a case with a lower humidification temperature. While, the worse cell performance is found for a case with a higher humidification temperature due to the water flooding in the cell. In this work, it is shown that the best cell performance and local current density distributions are found for the conditions with flow rate 1300sccm and cell temperature 60℃.
誌謝 I
摘要 II
Abstract III
目錄 IV
表錄 VI
圖錄 VII
符號說明 X
第一章 前言 1
第二章 文獻回顧 3
2.1水熱管理 3
2.2水氾濫 8
2.3局部電流 9
2.4交錯式流道 12
第三章 實驗設備與方法 14
3.1 質子交換膜燃料電池材料與規格 14
3.1.1 膜電極組 14
3.1.2 集電板 15
3.1.3 氣密墊片 16
3.1.4 極板 16
3.1.5 端板 17
3.2 實驗設備 17
3.2.1 溫度加熱系統 18
3.2.2 溼度控制系統 18
3.2.3 氣體供應系統 19
3.2.4 電子負載 20
3.2.5 流量控制系統 20
3.2.6 資料擷取系統 20
3.3 局部電流量測系統 21
3.4 開機程序與實驗步驟 22
3.4.1 開機前檢查步驟 22
3.4.2燃料電池實驗操作步驟 23
第四章 結果與討論 34
4.1 不同操作參數對燃料電池性能之影響 34
4.1.1 氣體流量對於燃料電池性能之影響 34
4.1.2 電池溫度對於燃料電池性能之影響 36
4.1.3 氣體加濕溫度對於燃料電池性能之影響 37
4.2 不同操作參數對燃料電池局部電流分佈之影響 38
4.2.1 基本條件在燃料電池中局部電流密度分佈 40
4.2.2氣體流量對於燃料電池局部電流分佈之影響 40
4.2.3電池溫度對於燃料電池局部電流分佈之影響 41
4.2.4氣體加濕溫度對於燃料電池局部電流分佈之影響 43
第五章 結論與建議 60
參考文獻 63
Ahmed, D.H. and Sung, H.J., 2007, “Local current density and water management in PEMFCs,” Int. J. Heat Mass Transfer, Vol. 50, pp. 3376-3389.
Chen, Y.S., Peng, H., Hussey, D.S., Jacobson, D.L., Tran, D.T., Abdel-Baset, T., and Biernacki. M. 2007, “Water distribution measurement for a PEMFC through neutron radiography,” J. Power Sources, Vol. 170, pp. 376-386.
Djilali, N. and Lu, D., 2002, “Influence of heat transfer on gas and water transport in fuel cells,” Int. J. Thermal Sciences, Vol. 41, pp. 29-40.
Eckl, R., Grinzinger, R., and Lehnert, W., 2006, “Current distribution mapping in polymer electrolyte fuel cells—A finite element analysis of measurement uncertainty imposed by lateral currents,” J. Power Sources, Vol. 154, pp. 171-179.
Francesco, M.D., Arato, E., and Costa, P., 2004, “Transport phenomena in membranes for PEMFC applications: an analytical approach to the calculation of membrane resistance,” J. Power Sources, Vol. 132, pp. 127-134.
Larminie, I. and Dicks, A., 2003, Fuel Cell Systems Explain, 2nd edition, John Wiley & Sons, England
Nguyen, T.V. and White, R.E., 1993, “A water and heat management model for proton-exchange-membrane fuel cells,” J. Electrochemical Soc, Vol. 140, No. 8, pp. 2178-2186.
Nishikawa, H., Kurihara, R., Sukemori, S., Sugawara, T., Kobayasi, H., Abe, S., Aoki, T., Ogami, Y., and Matsunaga, A., 2006, “Measurements of humidity and current distribution in a PEFC,” J. Power Sources, Vol. 155, pp. 213-218.
Okada, T., 1998a, “Theory for water management in membranes for polymer electrolyte fuel cells: Part 1. The effect of impurity ions at the anode side on the membrane performances,” J. Electroanalytical Chem., Vo1. 465, pp. 1-17.
Okada, T., 1998b, “Theory for water management in membranes for polymer electrolyte fuel cells: Part 2. The effect of impurity ions at the cathode side on the membrane performances,” J. Electroanalytical Chem., Vo1. 465, pp. 18-29.
Okada, T., Gang, X., and Meeg, M., 1998, “Simulation for water management in membranes for polymer electrolyte fuel cells,” Electrochimica Acta, Vo1. 43, No. 14-15, pp. 2141-2155.
Pathapati, P.R., Xue, X., and Tang, J., 2005, “A new dynamic model for predicting transient phenomena in a PEM fuel cell system,” Renewable Energy, Vol. 30, pp. 1-22.
Shan, Y. and Choe, S.Y., 2005, “A high dynamic PEM fuel cell model with temperature effects,” J. Power Source, Vol. 145, pp. 30-39.
Springer, T.E. and Zawodzinski, T.A., 1991, “Polymer electrolyte fuel cell model,” J. Electrochem. Soc, Vol. 138, Issue 8, pp. 2334-2342.
Su, A., Weng, F.B., Hsu, C.Y., and Chen, Y.M., 2006, “Studies on flooding in PEM fuel cell cathode channels,” Int. J. Hydrogen Energy, Vol. 31, pp. 1031-1039.
Sun, H., Zhang, G., Guo, L.J., and Liu, H., 2006, “A novel technique for measuring current distributions in PEM fuel cells,” J. Power Sources, Vol. 158, pp. 326-332.
Yan, W.M., Chen, F., Wu, H.Y., Soong, C.Y., and Chu, H.S., 2004, “Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells,” J. Power Sources, Vol. 129, pp. 127-137.
Yan, W.M., Mei, S.C., Soong C.Y., Liu Z.S., and Song D., 2006, “Experimental study on the performance of PEM fuel cells with interdigitated flow channels,” J. Power Sources, Vol. 160, pp. 116-122.
Ying, W., Sohn, Y.J., Lee, W.Y., Ke, J., and Kim, C.S., 2005, “Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC),” J. Power Source, Vol. 145, pp. 563-571.
Yoon, Y.G., Lee, W.Y., Yang, T.H., Park, G.G, and Kim, C.S., 2003, “Current distribution in a single cell of PEMFC,” J. Power Sources, Vol. 118, pp. 193-199.
You, L. and Liu, H., 2002, “A two-phase flow and transport model the cathode of PEM fuel cells,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2277-2287.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔