跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉振源
研究生(外文):Chen-Yuan Liu
論文名稱:專利資訊運用於特定科技領域之發展與創新之研究
論文名稱(外文):A study for innovation and development of a specific technological field using the patent informationA study for innovation and development of a specific technological field using the patent information
指導教授:羅勝益羅勝益引用關係
指導教授(外文):Shenq-Yih Luo
學位類別:博士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:135
中文關鍵詞:專利資訊
外文關鍵詞:Patent InformationInternational Patent ClassificationFI and F-term ClassificationTechnical MatrixPatent Design AroundIdesignsystemdata
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
專利包含許多重要的技術資訊,亦是科技及經濟發展的重要指標,同時,也是在創新與開發特定技術之際,所採行的主要手段。
本研究首先探討國際專利分類(Internation Patent Classification, IPC)與file index(FI)之間的構築關係、以及FI & F-term分類概念的操作模式。在此概念下,從擷取專利文件之文字性與數值性之資訊為始,進行專利資料的定性分析、定量分析、及相關性分析,以兩足機器人之步行技術、碳奈米管之製造與應用、及富勒烯領域之研發情形與技術群聚為例,運用邏輯運算,以分析該技術領域之潛在技術特徵與能量。進而,製作各式專利地圖和技術矩陣圖,以解讀該技術領域之技術動向、競爭者的排序、技術獨立性、競爭者之間的研發能力的評量、競爭對象之專利技術之引用情形、主流技術、相對研發能力、科學研發強度、技術連結網路、技術群聚、專利迴避及創造新穎技術等。最後,本研究對Loglet Lab、Pearl與Gompertz 等S曲線模型施行線性化處理及迴歸分析,找出各模型的參數,計算出轉折點、成長時間、飽和時間。進而藉由線上的Loglet Lab預測軟體系統,快速地取得數個可能的飽和值,而進行各模型的預測與分析,同時亦討論最小絕對值誤差和與最小殘差均方的分析,據此而預測專利技術之發展趨勢,探討特定技術的生命週期。
整體而言,本文不僅為開發特定技術領域,提出一快速且精準的專利檢索與技術評量模式,更為專利資訊應用於專利分析、創造新穎技術及預測技術趨勢,提出一明確可行的具體例証。
Patent information consists of huge critical technological information. It can be served as a vital index of scientific and economical development as well as a main device in creating and developing a specific technology.
In the beginning, this study is mainly to explore the structural relationship between the International Patent classification (IPC) and File Index (FI), and the conceptual operation mode of File Index (FI) & F-term classification system developed by JPO. Under this concept, the patent information are searched and retrieved in accordance with bibliographic data and numeric data for quantitative, qualitative and relative analyses in which the cluster of the walking technique of biped robot, the manufacture and application of carbon nanotube and the fullerene as major samples. With application of logic operation, it is to dig out the potential technological characteristic and capability in such given technical fields. A further advanced step is to prepare the patent map and technological matrix to figure out the technological development direction, competitor rank, technological independence, appraisal of R&D capability among competitors, patent citation condition by the competitors, technological mainstream, relative R&D capacity, scientific R&D strength, technical network linkage, technical cluster, patent design around and innovative technology. This study also utilizes to the best advantage the linear processing and the regression analysis derived from Loglet Lab, Pearl and Gompertz’s S curve models to find out the model parameters, to calculate the point of deflection, growth time and saturation time. The Loglet Lab’s online forecast software system is simultaneously employed to quickly obtain several possible saturation values for accurate forecasts and analyses under various models. Final discussions include the Least Sum of Modulus error and the Least Mean of Square Error in order to predict the development trend of the patented technology and the life cycle of a specific technology.
All in all, this study brings forth not only a fast, effective and reliable technological search and evaluative mode for a specific technological field, but also a solid and feasible example benefit to application of patent information analysis, innovation of novel technology and accurate forecast of technical trend.
大崙山的回思…………………………………………………………..……………..I
摘要…………………………………………………………………………………….II
ABSTRACT…………...……………………………..…………………….………..Ⅲ

Table of Contents……………………….…...……………………………….…….Ⅴ

List of Tables……………………..……………………………………………..………………Ⅸ

List of Figures….……..……….…...……………………………………………….Ⅹ

Chapter 1 Introduction…...…………………………………………….…….…1
1.1 Preface…………………………………………………………….………….………1
1.2 Related Literatures Review……………….……...…………………………………..2
1.3 Motives and Purposes………………………………………………………………..6
1.4 Contents of the thesis………………………………………………….………….….9
Chapter 2 IPC and FI&F-term…...……………………….………….……....10
2.1 International Patent Classification (IPC)…………………………….………...……10
2.1.1 Short History of IPC…………………………………………………….......10
2.1.2 IPC Symbol and Hierarchical System………………………………....……11
2.2 File Index (FI) and F-term Classification System………………………….……….14
2.2.1 Comparison of IPC and FI……………………………….…………..……..14
2.2.2 FI symbol…………………………………………………...………..……..15
2.2.3 Comparison of IPC and F-term…………………………..………....………16
2.2.4 Composition of F-term………………………………..……..…….………..18
2.2.5 Technical Thinking of F-term List…………………….….……….………..19
2.3 The Integration of IPC, ECLA, USPC, and FI…………….……....….………23
2.4 Summary…………………………………………………………..…………….….24
Chapter 3 Patent Data and Patent Map………………...…………………25
3.1 Bibliographic Data and numerical Data……………..……….………...…………..26
3.2 Patent Map………………………………………………..……..………………….28
3.2.1 Target…………………………………………………….……………...…..28
3.2.2 Flowchart and Preparation……………….…………….……………………32
3.3 Summary……………………………………………………..…………..…………35
Chapter 4 Analysis of Developing a Specific Technological Field Using the Theme Code of Japanese Patent Information………...……....36
4.1 Statement……………………………………………………….…………………..37
4.2 Methodology and Data……………………...…….………………….……….……39
4.3 Patent growth Analysis……………...…………..………………….…………...….42
4.4 Patent citation Analysis……………………...……….….…………..……………..47
4.4.1 Relative Research Capability………….….………….…...………………...47
4.4.2 Patent Citation of Competitors……………………....……………..……….51
4.4.3 Patent Citation Network………………………………….…………..……..53
4.5 Technical Matrix Analysis…………………………………...…..…………………55
4.6 Summary…………………………………………………….…..………………….61
Chapter 5 Analysis of Specific Subject Using Technology Matrix…..63
5.1 Investigation of Carbon Nanotube using the F-term Code………………...……….63
5.1.1 Statement………………………………………………………….…………63
5.1.2 Search Method……………………………………………………………….65
5.1.3 Analysis of Technical Features for Carbon Nanotube……….….……..…….66
5.1.4 Discussion………………………………………………………….….……..68
5.2 Technology Cluster of Fullerene…………………………..……...……..………….70
5.2.1 Statement…………………………………………………………………….70
5.2.2 Rank and Research Capability……………………………………….………71
5.2.3 Technology Cluster…………………………………..…...…….……………74
5.2.4 Discussion……………………………………………………….….………..76
5.3 Summary…………………………………………………………….….……….…77
Chapter 6 Patent Design Around and Innovation……………..……......78
6.1 Statement…………………………………………………………………….……..78
6.2 Patent Design Around……………………………….…………………...….…..….78
6.3 Analysis of Prior Art……………………………….……………………….………81
6.4 Innovative Technology…………………………………………….…………...…..86
6.5 Other Innovative Cases……………………………..………………………………86
6.6 Methodology………………………………………………………………………..88
6.7 Summary………………………………….…………………………………...……90
Chapter 7 Trend Analysis of Technology Forecasting Using the S Curve Models: the Walking Technique of the Biped Robot in Japan..………...91
7.1 Statement………………………...………………………….……………..……….92
7.2 Linear Regression and Parameter of S Curve Model………………………..……..98
7.2.1 Loglet Lab Model……………………………………………………………98
7.2.2 Pearl Model…………………………………………………………..……..102
7.2.3 Gompertz Model…………………………………………….……………...104
7.3 Operation of S Curve Model…………………………..………………………….107
7.3.1 Loglet Lab Curve Forecast System………………..………………….…….108
7.3.2 Loglet Lab Model……………………………………………………….….109
7.3.3 Pearl Model……………………………………………………..…….…….111
7.3.4 Gompertz Model………………………………...…………………..….…..113
7.3.5 Sum of Modulus Error and Mean of Square Error …………………...……114
7.3.6 The One-way ANOVA Summary Table………………..……………….…..117
7.4 Least Sum of Modulus Error and Least Mean of Squares Error………………….117
7.4.1 Least Sum of Modulus Error (LSME)…………………………….….…….117
7.4.2 Least Mean of Square Error (LMSE)………………………………………119
7.5 Discussion……………………………………………………………………..…..120
7.6 Summary……………………………………………………………………..…....122
Chapter 8 Conclusions and Contributions………………….…….….123
Reference…………………...…………….………………………………...………126
PUBLICATION...………...………………………………..……………..……….133
Journal Papers………………………………………………….…...……….……133
Non-Journal Papers………………………….…………………….…..….…….133
Conference………………………………...…………………………….………….133
Patents………………………………...……………………….…….…….………...134
Patent Application……….……...…………………….…..……………..…….….134
Personal Profile……….……...…………………….…..………………...………..135
Reference

[1]International-institute-for-Management-Development http://www.answers.com/topic/ Retrieved from the World Wide Web on March 12, 2007.
[2]Cantwell, J.A. and Jane, M., Technological globalization and innovative
centers: the role of corporate technological leadership and locational hierarchy,
Research Policy, 28 (23) pp119-144 (1999).
[3]Asakana, K., Organizational Tension in International R&D Management: The Care of Japanese Firms, Research Policy, 30 pp735-757 (2001).
[4]國科會,“第一屆亞太專利地圖研討會誌”,台灣台北,2003年10月28~30日。
[5]http://www.wipo.int/classifications/ipc/en/ Retrieved from the World Wide Web on March 12, 2007.
[6]http://www.tipo.gov.tw/patent/international_classify/patent_classify/patent_classify_v8.asp Retrieved from the World Wide Web on March 12, 2007.
[7]http://www.wipo.int/classifications/ipc/ipc8/?lang=en Retrieved from the World Wide Web on March 12, 2007.
[8]http://www.tipo.gov.tw/patent/international_classify/patent_classify/ Retrieved from the World Wide Web on March 12, 2007.
[9]Burrell, Q.L., Stochastic modeling of the first-citation distribution, Scientometrics, 52 (1) pp3–12 (2001).
[10]http://www.wipo.int/classifications/ipc/en/reform/ipc_reform.html Retrieved from the World Wide Web on March 12, 2007.
[11]http://www.ryutu.inpit.go.jp/PDDB/Service/PDDBService Retrieved from the World Wide Web on March 12, 2007.
[12]荒木雅也,“データ構造発明における「発明の成立性」の考察”,知財管理誌 2005年4月号,p118~132。
[13]高橋昭公,“特許情報の效率的なマクロ解析へのチャレンジ”,情報の科学と技術Vol.6 (2005),No.15。
[14]増井俊之,“情報視覚化の最近の研究動向”,情報の科学と技術 Vol. 54 (2004),No.11。
[15]Glänzel, W. and Schoepflin, U., A bibliometric study on aging and reception processes of scientific literature, Journal of Information Science, 21 (1) pp37–53 (1995).
[16]Glänzel, W. and Schoepflin, U., A stochastic model for the ageing of scientific literature, Scientometrics, 30 (1) pp49–64(1994)
[17]http://www.inpit.go.jp/info/indust/index.html Retrieved from the World Wide Web on March 12, 2007.
[18]Garfield, E., Long-term vs. short-term journal impact: Does it matter?, Scientist, 12 (3) pp11–12 (1998).
[19]Garfield, E., Long-term vs. short-term impact. Part II, Scientist, 12 (14) pp12–13(1998).
[20]Wolfgang, P., and Daniel, S., Patent information in a changing world: Perspectives from a major patent office, World Patent Information, 27 (4)pp 287-291(2005).
[21]Carpenter, M.P., and Narin, F., Validation study: patent cittions as indicators of science and foreig dependence, World patent Information, 5 pp180-185(1983).
[22]Irish, V., How to read a patent specification, Engineering Management Journal, 10 (2)pp71-73(2000).
[23]Basber, B., Patent and measurement of technilogical change:a survey of the literature, Research Policy, 16 pp131-141(1987).
[24]Carpenter, M.P., Cooper, M., and Narin, F., Linkage between basic research and patents, Research Management, 23 pp30-35(1980).
[25]EC-European Commission, Second European Report on S&T Indicators Report, Brussels (1997).
[26]Archibugi, D., Patenting as an indicator of technological innovation: a review, Science and Public Policy, 19 pp357-368(1992).
[27]Carpenter, M.P., Cooper, M., and Narin, F.,. Linkage between basic research and patents, Research Management, 23 pp30-35(1980).
[28]Meyer-Kramer, F., and Schmoch, U., Science-based technologies: university-industry interactions in four fields, Research Policy, 25 pp835-851(1998).
[29]Fagerberg, J., Technilogy and international differences in growth rates, Journal of Economic Literature, 32 pp1147-1175(1994).
[30]David, P.A., Mowery, D., and Steinmuller, E., Analysising the economic payoffs from basic research, Economics of Innovation and New technology, 2 pp73-90(1992).
[31]Holger, E., Patent applications and subsequent chenges of performance:evidence from time-esries cross-section analyses on the firm level, Reseaech Policy, 30 pp143-157(2001).
[32]Narin, F., and Noma, E., Is technology becoming science?, Scientometrics, 7 pp369-381(1985).
[33]Grupp, H., and Schmoch, U., Patent statistics in the age of globalisation: new legal procedures, new analytical methods, new economics interreation, Reseaech Policy, 28 pp377-396(1999).
[34]Archibugi, D., Patenting as an indicator of technological innovation: a review, Science and Public Policy, 19 pp357-368(1992).
[35]Trajtenberg, M.,. A Penny for your quotes: patent citations and the value of innovations, in: A. Jaffe M. Trajtenberg (Eds.), Patents, Citations and Innovations, The MIT press, Cambridge(2002).
[36]Zhu, A., Porter, D., Cunningham, S., Carlisie, J., and Nayak, A., A process for mining science and technology documents databases, illustrated for the case of knowledge discovery and data mining, Cienc. Inf. 28 (1) pp7-14(1999).
[37]Robert, J.W., Global and domestic utilization of industrial relevant scisnce:patent citation analysis of science-technology interactions and knowledge flows, Research Policy, 30 pp35-54(2001).
[38]Klevorick, A.K., Levin, R.C., Nelson,R.R., and Winter, G..S., On the Sources and significance of interindustry differences in technological opportunities, Res. Policy, 6 pp185-205(1995).
[39]Meyer-Kramer, F., Schmoch, U., Science-based technologies: university-industry interactions in four fields, Research Policy, 26 pp835-851(1998).
[40]Faulkner, W., and Senker, J., Making sence of diversity:public-private sector research linkage in three technologies, Research Plicy, 23 pp673-695(1994)..
[41]Hicks, D., Breitzman, T., Olivastro, D., and Hamilton, K., The changing composition of innovative activity in the US:a portrait based on patent analysis, Research Policy, 30 pp681-703(2001).
[42]Narin, F., Hamilton, K.S., and Olivastro, D., The increasing linkage between US technology and public science, Research Policy, 26 pp317-330(1997).
[43]Meyer, M., patent citing scientific literature: is the relationship causal or causal? The IPTS Report, 28 pp11-18(1998).
[44]Erkal, N., The decision to patent, cumulative innovation, and optimal policy, International Journal of Industrial Organization, 23 (7-8)pp535-562(2005).
[45]Yoon, B., and Park, Y., A systematic approach for identifying technology opportunities: keyword-based morphology analysis, Technological Forecasting and Social Change, 72 pp145-160(2005).
[46]Wissema, J.G.., Morphological analysis: its application to a company TF investigation, Futures, 8 pp146-153(1976).
[47]Dou, H.J.M., Benchmarking R&D and companies through patent analysis using free databases and special software: a tool to improve innovative thinking, World Patent Information, 26 pp297-309(2004).
[48]Mann, D.L., Better technology forecasting using systematic innovation methods, Technological Forecasting and Social Change, 70 pp779-795(2003).
[49]Gupta,V.K., and Pangannaya, N.B., Carbon nanotube: bibliometric analysis of patents, World Patent Information, 22 pp185-189(2000).
[50]Abraham, B.P., and Moitra, S.D., Innovation assessment through patent analysis, Technovation, 21 pp245-252(2001).
[51]Mogee, M., Using patent data for technology analysis and planning, Research-Technology Management, 34 pp43-49(1991).
[52]Millett, S.M., and Honton, E.J., A manager’s to technology forecasting and strategy analysis methods, Battelle Press, Ohio(1991).
[53]Schellner, I., Japanese File Index classification and F-Terms, World Patent Information, 24 pp197-201(2002).
[54]Schellner, I., Sources of Japanese patent information, World Patent Information, 23 pp149-156(2001).
[55]Japanese Patent Office.www.jpo.go.jp/indexj.htm
[56]Industrial Property Digital Library. www.ipdl.ncipi.go.jp/homepg_e.ipdl Retrieved from the World Wide Web on March 12, 2007.
[57]Karki, M.M.S., Patent citation analysis: a policy analysis tool, World Patent Information, 19 pp269-272(1997).
[58]Narin, F., Patent indicators for the evaluation of industrial research output, Scientometrics, 34 pp489-496(1995).
[59]Narin, F., and Olivastro, D., Technology indicators based on patents and patent citations, in: A. F. J. VAN RAAN (Ed.), Handbook of Quantitative Studies of Science and Technology, North Holland, Elsevier Publisher(1988).
[60]Randall, K., From scientist/engineer to patent searcher why, what, and how?
Searcher, Magazine for Database Professionals, 13 (6)pp28-31(2005).
[61]Schmoch, U., Indicators and the relations between science and technology, Scientometrics, 38 pp103-116(1997).
[62]Lin, M.J., Research on the measurement of corporate technology capability, International Journal of Technology Management, 13 pp133-139(1997).
[63]Gupta,V.K., and Pangannaya, N.B., Carbon nanotubes: bibliometric analysis of patents, World Patent Information, 22 pp185-189(2000).
[64]Hanel, P., Interindustry flows of technology. An analysis of the Canadian patent matrix and input-output matrix for 1978-1989, Technovation, 14 pp521-529(1994).
[65]Gleen, J.C., and Gordon, T.J., Futures Research Methodology, American Council for the UNU. Washington, DC(2003).
[66]Fleming, L., and Sorenson, O., Science as a map in technological search
, Strategic Management Journal, 25 (8-9)pp909-928(2004).
[67]Liu, S.J.; and Shyu, J., Strategic planning for technology development with patent analysis,
International Journal of Technology Management, 13 (5-6)pp661-680(1997)
[68]Yoon,B.U., Yoon,C.B., and Park, Y.T., On the development and application of a self-organizing feature map-based patent map. R&D Manage. 34 (4) pp291-300(2002).
[69]Iwayama, M., Fuji, A.; and Kando, N.; Evaluating patent retrieval in the third NTCIR workshop, Information Processing and Management, 42 (1)pp207-221(2006).
[70]Li, Q., Takanishi, A., and Kato, I., Biped walking robot having a ZMP measurement system using universal force-moment sensors, NASA Technical Memorandum, 103274 pp1568-1573(1990).
[71]Niosi, J., The internationalization of industrial R&D: from technology transfer to the learning organisation, Research Policy, 28 pp107-117(1999).
[72]Ernst, H. Patent portfolios for strategic R&D planning, Journal of Engineering and Technology Management, 15 (4)pp279-308(1998).
[73]JP1993-307413A
[74]JP2002-154078A
[75]JP2005-131756A
[76]JP2004-181601A
[77]JP1995-205085A
[78]JP2004-181599A
[79]JP1994-170757A
[80]JP2004-181600A
[81]JP2005-224921A
[82]JP2003-136440A
[83]Mulligan, J.F., Introductory College Physics, M cgraw-Hill, New York(1985).
[84]Beer, F., and Johnston, Jr., Vector Mechanics for Engineers:Dynamics,5th ed., Mcgraw-Hill, New York(1988).
[85]經濟部智慧財產局編“專利審查基準”(2000)。
[86]Fujita, T., The service activities of patent information in JAPAN TAPPI Patent Committee - Use of the industrial property digital library (IPDL),
Kami Pa Gikyoshi/Japan Tappi Journal, 56 (2)pp54-58(2002).
[87]PATOLIS Corporation. http://www.patolis.co.jp Retrieved from the World Wide Web on March 12, 2007.
[88]Chandra, P., and Narasimhan, G., Nanotechnology in India: Government support, market acceptance and patent profile, Nanotechnology Law and Business, v2(3)pp289-293(2005).
[89]Iijima, S., Helical microtubes of graphitic carbon, Nature, 356:56(1991).
[90]Iijima, S., and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363:603(1993).
[91]廬希鵬、馬振基,“奈米材料技術地圖”,STIC-RPR-092-23,國科會(2003)。
[92]http://search.p4.patolis.co.jp/search.html?kk=0001 Retrieved from the World Wide Web on March 12, 2007.
[93]Hsu, F.C., Hou, J.L., and Liu, S.J., Technology and knowledge document cluster analysis for enterprise R and D strategic planning, International Journal of Technology Management, 36 (4)pp336-353(2006).
[94]Mann, D.L., Better technology forecasting using systematic innovation methods. Technol. Forecast. Soc. Change, 70 pp779-795(2003).
[95]Mogee, M., Using patent data for Technology analysis and planning. Res. Technol. Manag, 34 pp43-49(1991).
[96]Zhu, D., and Porter, A.L., Automated extraction and visualization of information for technological intelligence and forecasting, Technol. Forecast. Soc.Change, 69 pp495-506(2002).
[97]Miyazaki, F., and Arimoto, S., A control theoretic study on dynamical biped locomotion, ASME Journal of Dynamic Systems Measurement and Control, 102 pp233-239(1980).
[98]Gollidary, C.L., and Hemami, H., An approach analyzing biped locomotion dynamics and designing robot locomotion control, IEEE Transactions on Automatic Control, 22 (6) pp963-972(1977).
[99]Caux, S., and Zapata, R., Toward a unified form of biped robot dynamic modeling, Proceedings of IEEE International Conference on Robotics and Automation, pp3249-3254(1997).
[100]Perrin, B., Chevallereau, C., and Verdier, C., Calculation of the direct dynamic model of walking robots: comparison between two methods, Proceedings of IEEE International Conference on Robotics and Automation, pp1088-1093(1997).
[101]Azevdo, C., Poignet, P., and Espian, B., Moving horizon control for biped robots without reference trajectory, Proceedings of IEEE International Conference on Robotics and Automation, pp2762-2767(2002).
[102]Liu, C.Y., and Lou, S.Y., Analysis of developing a specific technological field using the theme code of Japanese patent information, Scientometrics. (accepted in 2007)
[103]Cioffi, D.F., A tool for managing projects: an analytic parameterization of the S-curve, International Journal of Project Management, 23 pp215-222(2005).
[104]Rajeswari, A, R., Forecasting of science & technology expenditure of India by simulation method, Scientometrics, 17 pp227-251(1989).
[105]Watts, R.J., and Porter, A.L.,. Innovation forecasting. Technol. Forecast. Soc. Change, 56 pp25-47(1997).
[106]Golden, B.L., and Zantek, P.F., Inaccurate forecasts of the logistic growth model for Nobel prizes, Technological Forecast & Social Change, 71 pp417-422(2004).
[107]Gutierrez, R., Gutierrez-Sanchen, R., Nafidi, A., and Ramos, E., A new stochastic Gompertz diffusion process with threshold parameter: computational aspects and applications, Applied Mathematics and Computation, 183 pp738-747(2006).
[108]Boretos, G..P., The future of the mobile phone business, Technological Forecast & Social Change, 74 pp331-340(2007).
[109]Mai, F.T., Huang, F.T. Jan, K.M. Wang, Y.M., and Chen, C.Y., Patent map and analysis of carbon nanotube, Science and Technology Information Center, National Science Council, Taiwan, STIC-RPR-091-07, 2002. (Chinese)
[110]Jan, K.M., Hong, C.C., Wu, T.H., Wang, Y.M., and Lan, Y.P., Patent map and analysis of titanium dioxide or titanium oxide, Science and Technology Information Center, National Science Council, Taiwan, STIC-RPR-092-04, 2003. (Chinese)
[111]Meyer, P.S., Yung, J.W., and Ausebel, J.H., A primer on logistic growth and substitution the mathematics of the Loglet Lab software, Technological Forecast & Social Change, 61 pp247-271(1999).
[112]Yung, J.W., Meyer, P.S., and Ausubel, J.H., The Loglet Lab software: a tutorial, Technological Forecast & Social Change, 61 pp273-295(1999).
[113]Dragan, J., Gordana, K., and Rudolf, S., Least-squares fitting Gompertz curve, Journal of Computational and Applied Mathematics,169 pp359-375(2004).
[114]Bengisu, M., and Nekhili, R., Forecasting emerging technologies with the aid of science and technology databases, Technological Forecast & Social Change, 73 pp835-844(2006).
[115]Pelt, J.V., and Schierwagen, A., Morphological analysis and modeling of neuronal dendrites, Math. Biosci, 188 pp147-155(2004).
[116]Yoon, B.U., and Park, Y.T., A text-mining-based patent network:analytical tool for high-technology trend. J. High Technol. Managem. Res. 15 pp37-50(2004).
[117]http://phe.rockefeller.edu/LogletLab/ Retrieved from the World Wide Web on March 12, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top