跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴良一
研究生(外文):Liang-Yi Lai
論文名稱:壓電基板表面濺鍍不同金屬電極薄膜特性探討
論文名稱(外文):A Study on the Properties of Various Metallic Electrode Thin Films Sputtered On the Piezoelectric Substrates
指導教授:蔣煥梧
指導教授(外文):Huann-Wu Chiang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:109
中文關鍵詞:壓電基板
外文關鍵詞:Piezoelectric Substrates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面聲波元件(SAW)是在壓電基板上利用聲電換能原理的特性
,做各種訊號的處理。由於表面聲波元件具有頻率範圍廣、重量輕、體積小、且與IC 製程技術相容的優點,因此被廣泛運用於無線通訊濾波器,諧振器和振盪器方面。表面聲波元件的構造是由壓電基材及金屬電極組成,對於壓電基板而言,其主要的功能是協助訊號的激發轉換,至於電極材料而言,主要的功能則是在激發壓電基板的表面波和訊號的接收及傳遞,其重要的變數有材料的種類及沉積的薄膜厚度。
本研究分別在Quartz及LiTaO3壓電基板上濺鍍鋁、鉭及銅等不同的金屬電極薄膜以量測其表面性質、機械性質、顯微結構,並於高溫儲存後,再利用四點探針,Alpha-Step、Nanoindenter、Adhesion tester等儀器的量測來探討經過150℃高溫儲藏試驗之後薄膜性質變化的情形。
實驗結果顯示相同的電極薄膜其粗糙度會隨著晶粒的成長而變大,不同的電極薄膜晶粒愈大著,其粗糙度的值也就愈大,不同電極之濺鍍晶粒形狀及大小不同,此外電極薄膜經過高溫儲存之後,因晶粒成長其片電阻值會有明顯降低的趨勢。藉由奈米壓痕試驗發現,鉭和鋁薄膜彈性數係隨高溫儲存時間增加而上升,而硬度則下降 ; 銅電極因高溫時氧化而呈現和鋁、鉭電極結果相反的趨勢。
The surface-acoustic-wave (SAW) devices can process various signals by using the acoustic wave-electrical signal conversion on a piezoelectric substrate. SAW devices are widely used in the wireless communication filters industry as resonators and the oscillators, due to the advantages of wide frequency range, light weight, small size, and the excellent comparability with the integrated-circuit processes. SAW device is comprised two transducers which are interdigital arrays of thin metal electrodes on a piezoelectric substrate. A piezoelectric material is one in which there exists a reciprocal, linear relationship between the electric field and the strain in the material. The main function of the metallic electrodes is to excite the surface wave on the piezoelectric substrate, as well as to receive and transmit the signals. The important parameters of the electrodes include type of the materials used and the thickness of depositing thin film.
In this study three metallic electrode thin films including aluminum, tantalum, and copper were sputtered Quartz and LiTaO3 piezoelectric substrates. The surface properties, mechanical properties and micro structure of these thin films were then examined. After 150°C high temperature storage test, measurements including four-point probe technique, Alpha-Step, Nanoindenter, and Adhesion test were performed on the sample to explored the thin film properties as functions of annealing time.
The experimental results show that the surface roughness as well as the grain size of the electrode thin film increase with increasing sputtering times. Different grain shape and grain size were obtained for different sputtering electrodes. In addition, the sheet resistances of the Al and Ta electrodes were found decrease with increasing HTS time due to the grain growth of the electrode thin film. Furthermore, it was found by using nanoindentation technique that the young,s modulous of the Al and Ta electrode were increase with increasing HTS time, while the hardness were decrease with increasing HTS time. On the other hand, Cu electrode shown an opposite trend on both young,s modulous and hardness to that of Al and Ta electrodes due to oxidation of Cu electrode during HTS annealing.
中文摘要……………………………………………………………………..…….I
英文摘要………………………………………………………………………..…III
誌謝………………………………………………………………………..……….V
總目錄………………………………………………………………………...….V I
圖目錄…………………………………………………………………………... .IX
表目錄……………………………………………………………………….…...XII
第一章 序論…………………………………………………………………….…1
1-1 研究背景與動機………………………………………………...….……...1
第二章 原理及文獻回顧………………………………………………….………4
2-1表面聲波概論………………………….…………………………….…….4
2-2 表面聲波元件理論……………………...…………………….…………...5
2-3 表面聲波元件特點………………………………………….......................6
2-4 表面聲波元件組成………………………………………….......................7
2-4-1表面聲波元件基本構造 ...…………………………………….…… 7
2-4-2表面聲波元件基板.………………………………………...............8
2-4-2-1表面聲波元件基板之選擇.……………………………................8
2-4-2-2石英基板之特性.………………………………………................9
2-4-2-3鉭酸鋰基板之特性.……………………………………................9
2-4-3表面聲波元件電極材料.………………………………..................10
2-4-3-1薄膜電極材料對表面聲波元件的影響.……………..................10
2-4-3-2表面聲波元件電極材料之選擇.……………………..................10
2-4-3-2-1鋁金屬電極基本特性…………….........................................11
2-4-3-2-2鉭金屬電極基本特性…………….........................................11
2-4-3-2-3銅金屬電極基本特性…………….........................................11
2-4-3-3電極薄膜製作……………............................................................12
2-4-3-3-1電極薄膜沉積方式…………….............................................12
2-4-3-3-2濺鍍理論…………….............................................................13
2-4-3-3-3薄膜沉積的機制…………….................................................17
2-5 壓電理論………………………………………….....................................19
2-5-1壓電原理…………………………………...........................................19
2-6 奈米壓痕技術量測理論………………………….....................................22
2-7 信賴性測試…………………………………….........................................24
2-7-1簡介…………………………………...................................................24
2-7-2測試項目……………………………...................................................25
第三章 實驗方法內容....………………………………………………….……..40
3-1 實驗流程…………………………………….............................................40
3-2 基板製備…………………………………….............................................40
3-3 基板清洗…………………………………….............................................40
3-4 金屬薄膜沉積……………………………….............................................41
3-5 高溫儲存試驗……………………………….............................................41
3-6 薄膜結晶結構分析………………………….............................................41
3-7 薄膜膜厚沉積量測………………………….............................................42
3-8 薄膜電極表面微觀組織觀察……………….............................................42
3-9 附著力測試…………………...........................................................43
3-10 薄膜電極表面粗糙度量測……………...................................................43
3-11 硬度測試…………………………….......................................................44
3-12 彈性係數測試...........................................................................................45
第四章 結果與討論....…………………………………………………….……..52
4-1 濺鍍參數對沉積金屬電極薄膜的影響…….............................................52
4-1-1濺鍍時間對沉積電極薄膜膜厚的影響...............................................52
4-1-2濺鍍時間對沉積電極薄膜粗糙度的影響...........................................53
4-2 薄膜基板性質分析………………………….............................................54
4-2-1薄膜XRD微結構分析.......................................................................54
4-2-2薄膜SEM表面微結構觀察...............................................................55
4-2-3薄膜彈性係數和硬度量測...................................................................57
4-3 壓電基板濺鍍金屬電極薄膜之高溫儲存試驗.........................................57
4-3-1溫度對金屬電極薄膜附著力的影響...................................................58
4-3-2溫度對金屬電極薄膜電性之影響.......................................................58
4-3-3溫度對金屬電極薄膜彈性係數的影響...............................................59
4-3-4溫度對金屬電極薄膜硬度的影響.......................................................59
第五章 結論....…………………………………………………….……………102
第六章 參考文獻……………………………………………….………………104
[1]. Lord Rayleigh, “On waves propagation along the plane surface of an elastic solid”, Proc., London Math. Soc., Vol.17,1885, pp.4-11.
[2]. R. M. White, and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett. 7,1965, pp.314-316.
[3]. J. J. Campbell and W. R. Jones,“A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves”, IEEE Trans. Vol.15, 1968.
[4]. 陳建嘉,“壓電材料耦合理論參數之擷取”,義守大學電機工程學系碩士論文,2005年。
[5]. 林至明,“層狀寬頻表面聲波濾波器之研究”, 國立臺灣大學應用力學研究所碩士論文,2002年。
[6]. 方順益,“表面聲波雙共振器的散射特性”,義守大學電機工程學系碩士論文,2000年。
[7]. B.k.Shinha, J.L.Groves, Y.Sudo and S.Sato,“Frequency Stability of SAW Oscillator at High Temperatures”, Proc., IEEE,1988, pp.288-300.
[8]. J.C.Andle and J.F.Vetelino, “Theoretical and Experimental Results on Two-port Resonators Fabricated on 36°Lithium Tantalate”, Proc., IEEE, 1988, pp.861-866.
[9]. F.C.Chnag, L.Wu, C.L.Huang, Y.S.Chen, M.S.Lee, J.C.Jong, Y.B.Huang and C.S.Huang, “Low loss ladder-type IF SAW filter used Au-Ge-Ni electrode”, Proc., IEEE, 2002, pp.159-162.
[10]. W.Richard Smith, Henry M. Gerard, Jeffrey H. Collins, Thomas M. Reeder, and Herbert J. Shaw, “Design of Surface Wave Delay Lines with Interdigital Transducers”, IEEE Transcations on Microwave Theory and Techniques, Vol.11, 1969.
[11]. C.K. Campbell, “Chapter 2.2 Surface Acoustic Waves”, Surface Acoustic Wave Devicesfor Mobile and Wireless Communications, 1998.
[12]. C.K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”,1998.
[13]. 朱募道,“表面聲波元件原理與應用”,新電子--光電元件專輯,1994年3月,pp.183-186。
[14]. 王宏文,“淺談表面聲波感測器”,工業材料—精密陶瓷專輯,第89期1994年5月,pp.44-45。
[15]. 李翊宏,“氮化鋁薄膜在鈮酸鋰及ST切面石英基板上之表面聲波頻率溫度係數之研究”,國立中山大學電機工程學系碩士論文,2002年。
[16]. 陳盈樹,“低損耗梯型中頻表面聲波濾波器之研究”,國立成功大學電機工程研究所碩士論文,2002年。
[17]. 歐天凡,“沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”, 國立中山大學電機工程學系碩士論文,2004年。


[18]. 林耀東,“鉭酸鋰非線性光子晶體雷射與其高溫製程”,國立臺灣大學光電工程學系碩士論文,2002年。
[19]. B.K.Sinha, “Thin-Film Induced Effects on the Stability of SAW Devices”, Proc., IEEE, Vol.36, 1989, pp.231-241.
[20]. C.M. Flannery, H. von Kiedrowski, “Effects Of Surface Roughness On Surface Acoustic Wave Propagation In Semiconductor Materials”, Vol.40, 2002, pp.83–87.
[21]. K.Y.Hashimoto, “Surface Acoustic Wave Devices in Telecommunications”, New York, 2000.
[22]. 賈德昌,“電子材料”,滄海書局,2002年。
[23]. 曾麟雄,“Fe基合金薄膜之磁性質與奈米結構研究”,義守大學材料科學與工程學系碩士論文,2005年。
[24]. 吳朗, “電子陶瓷-壓電” ,全欣科技圖書,1994年。
[25]. C.K.Campbell, “Chapter 2: Basic of piezoelectricity and acoustic waves”, Surface acoustic wave devices for mobile and wireless communication, 1998.
[26]. D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers, G. C. Frye, andH. WohItjen, “Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications”, Academic Press, Inc., San Diego, CAU.S.A, 1997.
[27]. Colin Campbell: “Chapter 2 Basic of Acoustic Waves and Piezoelectricity”, Surface Acoustic Wave Devices and Their Signal Processing Applications, 1989.

[28]. Q.Ma and D. R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research, 1995, pp.853-863.
[29]. M.Ben Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy, and .L.Bozet, “Nanoindentation investigation of Ti/TiN multilayersfilms”, Journal of Applied Physics Vol.87, 2000, pp.7753-7757.
[30]. Mante F; Baran GR; Lucas B, “Nanoindentation studies of titanium
single crystals”, BIOMATERIALS 1999, pp.1051-1055.
[31]. M.S. Bobji, “Deconvolution of hardness from data obtained from
nanoindentation of rough surfaces”, S.K. Biswas, pp.2259-2268.
[32]. W. D. Nix and H. Gao, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity”, Journal of the Mechanics and Physics of Solids, Vol. 46, 1998, pp.411-425.
[33]. G.M.Pharr and W.C.Oliver, “Measurement of Thin Film Mechanical Properties Using Nanoindentation”, MRS., pp.28-33.
[34]. SHIMADZU Dynamic Ultra-micro Hardness Tester
DUH-W201,DUH-W201SInstruction manual, pp.5.1-5.14.
[35]. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1992, p.1564.
[36]. 丁志華、管正平、黃新言、戴寶通,國家奈米元件實驗室
“奈米壓痕量測系統簡介”,奈米通訊,第九卷第三期,pp.4-10。
[37]. 行政院國科會精儀中心,“微機電系統技術與應用”,pp.864-883。

[38]. Y.Igasaki and H.Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering ”, Thin Solid Films,vol199, 1991, pp.223-230.
[39]. R.Flitsch, and D-Y.Shih, “A study of modified polyimide surfaces as related to adhesion ”, Journal of Vacuum Science Technology, 1990, p.2380.
[40]. V.V. Krylov, Prog. Surf. Sci. 32 , 1989, pp.39-110.
[41]. A.G. Eguiliz, A.A. Maradudin, Phys. Rev. B 28, 1983, pp.728-747.
[42]. A.P. Mayer, M. Lehner,Waves Random Media 4, 1994, pp.321-335.
[43]. A.V. Shchegrov, J. Appl. Phys 85, 1995, pp.1565-1574.
[44]. V.V. Kosachev, A.V. Shchegrov, Ann.Phys. 240, 1995, pp.225-265.
[45]. M.de Billy, G.Quentin, E. Baron, J. Appl. Phys. 61, 1987, pp.2140-2145.
[46]. V.V. Krylov, Z.A. Smirnova, Sov. Phys. Acoust. 36, 1990, pp.583-585.
[47]. M.F. Doerner, W.D. Nix, Crit. Rev. Solid State Mater. Sci. 14, 1998, p.225.
[48]. W.D. Nix, R.F. Mehl Medalist, Metall. Trans. A 20, 1989, p.2217.
[49]. B.D.Fabes, W.C.Oliver, R.A.Mckee and F.J.Walker, “ The determination of film hardness form the composite response of film and substrate to nanometer scale indentations”, J.Mater.Res., Vol.7, 1992, p.11.


[50]. M.S.Bobji and S.K.Biswas, “Deconvolution of hardness form data obtained from nanoindentation of rough surface”, J.Mater.Res., 1999, Vol.14, p.6.
[51]. B.Bhushan, Handbook of micro/nanotibology, 2nd ed., CRC Press, Boca Raton,1999.
[52]. 鐘建川,“IIDT結構表面聲波元件特性之探討”,國立成功大學電機工程研究所碩士論文,2003年。
[53]. http://www.saw-device.com
[54]. http://www.almazoptics.com/LiTaO3.html
[55]. 譚仲明,“奈米薄膜機械性質之探討”,國立中正大學機械工程研究所博士論文,2005年。
[56]. http://140.114.18.41/film/lhchou3.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top