跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠廷
研究生(外文):Guan-Ting Chen
論文名稱:新型全彩有機電激發光元件之研究
論文名稱(外文):The Study of Novel Full Color Organic Light-Emitting Device
指導教授:橫山明聰
指導教授(外文):Meiso Yokoyama
學位類別:博士
校院名稱:義守大學
系所名稱:電機工程學系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:111
中文關鍵詞:場發射有機電激發光元件微共振腔
外文關鍵詞:Field emissionOLEDMicro-cavity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,大致上分為兩大部分來探討前瞻性有機電激發光元件之研究。第一部份主要是探討利用微共振腔結構來製作紅光、綠光、藍光三原色有機電激發光元件。第二部份是探討利用塗佈氧化物的陰極當作電子發射源製作場發射式有機電激發光元件。
在本論文第一部份所探討具微共振腔結構的OLED是利用陽極和陰極作為兩個反射鏡形成共振腔結構,並以Alq3作為綠光光源或NPB:Rubrene/Balq:TBPe作為白光光源搭配調整微共振腔長度而得到紅、綠、藍三原色。在此,我們藉由調整微共振腔內電洞注入層的厚度來改變共振腔長度,進而得到紅光、綠光以及藍光上發光有機電激發光元件而不需用到彩色濾光片。我們發現具微共振腔結構的有機電激發光元件實際發光頻譜和利用微共振腔理論光學模型所模擬的發光頻譜是非常一致的。利用微共振腔結構製作OLED不僅可以使元件發光頻譜變窄並提高發光強度還可簡化傳統全彩有機電激發光面板的製程。
本論文具微共振腔上發光型OLED元件以Alq3作為綠光光源的原件結構為:ITO/Ag (1000 Å, treated with O2 plasma)/m-MTDATA:F4TCNQ (2 wt%, x Å)/NPB (200 Å)/Alq3 (500 Å)/LiF (7 Å)/Al (10 Å)/Ag (200 Å)。藉由改變電洞注入層m-MTDATA:F4TCNQ之厚度x,可得到全彩紅、綠、藍OLED元件。,當電洞注入層厚度x分別為70 nm、85 nm與115 nm在電流密度為50 mA/ cm2操作下,可分別得到波峰為480 nm的藍光、525 nm的綠光以及620 nm的紅光,而其CIE色座標則分別為(0.16, 0.37)、(0.19, 0.72)以及(0.56, 0.42)。其色彩飽和度可達NTSC規範的46.6%。
除此之外,以NPB:Rubrene/BAlq:TBPe作為白光發光源具微共振腔上發光型OLED元件結構則為:ITO/Ag (1000 Å, treated with O2 plasma)/m-MTDATA:F4TCNQ (2 wt%, x Å)/NPB (150 Å)/NPB:Rubrene (50 Å)/BAlq:TBPe (150 Å)/Alq3 (200 Å)/LiF (7 Å)/Al (10 Å)/Ag (200 Å)。當電洞注入層厚度x分別為55 nm、75 nm與105 nm在電流密度為50 mA/ cm2操作下,可分別得到波峰為465 nm的藍光、520 nm的綠光以及615 nm的紅光,而其CIE色座標則分別為(0.17, 0.16)、(0.24, 0.60)以及(0.59, 0.39)。其色彩飽和度可達NTSC規範的56.8%,此值較以Alq3最為綠光光源的OLED元件提高許多。
在本論文第二部份,將提出一個全新的場發射式有機發光元件,此元件是在真空狀態下以塗佈氧化物的陰極做為電子發射源將電子注入有機發光薄膜進而發光。實驗證明有機層的結構會大大影響場發射式有機發光元件的光電特性。我們發現場發射式有機發光元件不管是在ITO玻璃基板上蒸鍍單層Alq3結構或多層m-MTDATA/NPB/Alq3結構皆會發出Alq3發光頻譜。然而在陽極電壓150伏特下,單層與多層結構場發射式有機發光元件發光亮度分別約為50 cd/m2及225 cd/m2。實驗證明多層結構場發射式有機發光元件的發光效率遠高於單層元件。我們推斷利用場發射的方式將電子注入有機層,其發光機制仍是類似傳統有機電激發光元件的電激發光機制。
This thesis deals with two advanced organic light emitting devices (OLEDs). The first part is chiefly concerning RGB tricolor OLEDs with micro-cavity structure. The second topic is related to field emission organic light emitting device using oxide-coated cathode as electron source.
In the first part of this thesis for the study of OLEDs with micro-cavity structure, micro-cavity OLEDs were formed by using an anode as one mirror and cathode as a second mirror. And three primary colors RGB have been designed and obtained by using Alq3 as green emission layer or NPB:Rubrene/Balq:TBPe as a common white emission layer. We can control the thickness of the hole injection layer to mediate the optical length and get the light of red, green and blue top-emitting OLEDs without using the color filter. From experimental results, we found the optical simulation model agrees well with the experimental emission spectra of the top-emitting OLEDs with micro-cavity structure. The spectral narrowing and intensity enhancement at the resonance wavelength have also been observed. The intensity and the spectrum of top-emitting OLED can be significantly altered by the device structure because of the micro-cavity effect. It also simplifies the traditional manufacture process of the full-color OLED flat panel.
The devices structure of green-light based top-emitting OLEDs with micro-cavity is expressed as: ITO/Ag (1000 Å, treated with O2 plasma)/m-MTDATA:F4TCNQ (2 wt%, x Å)/NPB (200 Å)/Alq3 (500 Å)/LiF (7 Å)/Al (10 Å)/Ag (200 Å). We can control the thickness of the hole injection layer x to mediate the optical length and get the light of red, green and blue top-emitting OLEDs. we found that when the thickness (x) of the HIL is set as 70 nm, 85 nm, and 115 nm, we can get the blue, green, and red OLEDs with wave crest as 480 nm, 525 nm, and 620 nm, and the corresponding CIE chromaticity coordinates are (0.16, 0.37), (0.19, 0.72) and (0.56, 0.42) respectively (at 50 mA/cm2). And the color saturation attained is 46.6 % as defined by the NTSC (National Television System Committee).
Furthermore, the device structure of white-light based top-emitting OLED with micro-cavity is given by: ITO/Ag (1000 Å, treated with O2 plasma)/m-MTDATA:F4TCNQ (2 wt%, x Å)/NPB (150 Å)/NPB:Rubrene (50 Å)/BAlq:TBPe (150 Å)/Alq3 (200 Å)/LiF (7 Å)/Al (10 Å)/Ag (200 Å). we found that when the thickness (x) of the HIL is set as 55nm, 75nm, and 105nm for blue, green, and red OLED, the wave crest of the blue, green, and red OLED occurs at 465nm, 520nm, and 615nm, and the corresponding CIE chromaticity coordinates are (0.17, 0.16), (0.24, 0.60) and (0.59, 0.39), respectively (at 50 mA/cm2). And the color saturation attained is 56.8% as defined by the NTSC. The color saturation of white-light based devices significantly exceed that of green-light based devices.
In the second part, the optical and electrical properties of organic thin film using oxide-coated cathode as electron source have been studied. We elucidate an emission mechanism of organic thin films as emission layer. Experimental results indicate that the emission characteristics depended strongly on the device structure. Green emission was both observed in a single-layered Alq3 film and multilayered m-MTDATA/NPB/Alq3 structure. However, the luminescence of the single-layered structure and multilayered m-MTDATA/NPB/Alq3 structure was about 50 and 225 cd/m2 (anode voltage were 150 V), respectively. From experimental result, the multilayered device was significantly exceeded that of the single-layered device in luminescence efficiency. We suggest that electroluminescence (EL) mechanism is the most likely emission mechanism in these devices.
Publications and Preprints I
Patents V
Abstract (in Chinese) VI
Abstract (in English) VIII
Acknowledgment X
Figure Caption XI Table Caption XIV Content XV

Chapter 1 Introduction 1
1.1 Brief History of Organic Electroluminescence 2
1.2 Application in Flat Panel Displays 4
1.3 Full Color on OLED Devices 5
1.4 Thesis Outline 8
Chapter 2 Basic Concepts of Organic Light Emitting Diodes and Experimental Procedure 14
2.1 Luminescent Mechanisms of Organic Materials 14
2.2 Structure and Fabrication of OLED Devices 15
2.3 The Operation Theory of OLEDs 17
2.4 Optical Structures and Characteristics of OLEDs 22
2.5 Microcavity OLEDs 24
2.5 Experimental Procedure 27
2.5.1 ITO Substrate Etching and Cleaning 27
2.5.2 Deposition of Organic Thin Films and Electrodes 27
2.5.3 Measurements 28
Chapter 3 RGB Tricolor Organic Light emitting Diodes with Micro-cavity Structure 39
3.1 Enhancement of Hole Injection Using O2 Plasma-Treated Ag Anode for Top-Emitting Organic Light-Emitting Diodes 40
3.1.1 Introduction 40
3.1.2 Sample preparation and Experiments 42
3.1.3 Results and Discussion 43
3.1.4 Conclusions 45
3.2 Green-light and White-light Based Top-emitting Devices with Micro-cavity Architecture 45
3.2.1 Introduction 45
3.2.2 Simulations 46
3.2.3 Sample preparation and Experiments 48
3.2.4 Results and Discussion 50
3.2.4.1 Green-Light Based Top-Emitting Devices with Micro-Cavity Architecture 50
3.3.4.2 White-Light Based Top-Emitting Devices with Micro-Cavity Architecture 52
3.3.5 Conclusion 54
Chapter 4 Field Emission Organic Light Emitting Device Using Oxide-coated Cathode as Electron Source 72
4.1 Introduction 72
4.2 Sample preparation and Experiments 74
4.3 Results and Discussion 76
4.4 Conclusions 79
Chapter 5 Conclusions and Future Prospects 85
References 87
1.M. Pope, H .P. Kallmann, and P. Magnante, J. Chem. Phys.,38, 2042 (1963).
2.C. W. Tang, and S.A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
3.J. H. Burroughes, C.A. Jones, and R.H. Friend, Nature, 335, 137 (1988).
4.J. H. Schon, A. Dodabalapur, C.Kloc, and B. Batlogg, Science, 290, 963 (2000).
5.J. H. Schon, and C. Kloc, Appl. Phys. L ett., 79, 4043 ( 2001 ).
6.J. H. Schon, Appl. Phys. Lett., 79, 4163 (2001).
7.J. H. Schon, H. Meng, and Z. Bao, Nature, 413, 713 (2001).
8.J. H. Schon, and Z. Bao, Appl. Phys. Lett., 80, 332 ( 2002).
9.H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi and A. J. Pal, J. Appl. Phys.,9l, 2433 (2002).
10.S. A. Jenekhe and S. Yi, Appl. Phys. Lett., 77, 2635 (October, 2000).
11.J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P. L. Burns, and A.B. Holmes, Nature, 347, 539 (1990).
12.V. G. Kozlov, V. Bulovi, P.E. Burrows, and S.R. Forrest, Nature, 389, 362 (1997).
13.J.H. Schon, C. Kloc, A.Dodabalapur, and B. Batlogg, Science, 289, 599 (2 000).
14.P.E. Burrows, G.Gu, V. Bulovic, Z. Shen, S.R. Forrest, and M.E. Thompson, IEEE Transactionosn Electron D evices, 44, 1188 (1997).
15.W. Helfrich, and W.G. Schneider, Phys.Rev. Lett., 14, 229( 1965).
16.R. H. Partridge, Polymer, 24, 733 (1982).
17.D. Braun, and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
18.J. Kido, M. Kohda, M. Okuyama and K. Nagai, Appl, Phys. Lett., 61, 76I (1992).
19.G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, and A.J. Heeger, Nature, 357, 477 (1992).
20.P.E. Burrows, S.R. Forrest, and M.E. Thompson, Current Opinion in Solid State & Materials Science, 2, 236 (1997).
21.G .Gu, and S.R. Forrest, IEEE Journal of Selected Topics in Quantum Electrbnics, 4, 83 (1998).
22.Y. Fukuda, T. Watanabe, T. Wakimoto, S. Miyaguchi, and M. Tsuchida, Synthetic Metals, 111-112, 1 (2000).
23.A. Sempel, and M. Buchel, Organic Electronics, 3, 89 (2002).
24.S.W. Kim, B.H. Hwang, J.H. Lee, J.I. Kang, K.W. Min, and W.Y. Kim, Current Applied Physics, 2, 335 (2002).
25.S. R. Forrest, P.E. Burrows, Z. Shen, G. Gu, V. Bulovic, and M. E. Thompson, Synthetic Metals, 91, 9 (1997).
26.H. Kanno,Y . Hamada,a nd H. Takahashi, IEEE Journal of Selected Topics in Quantum Electronics, 10, 30 (2004).
27.J.R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman and A. Stocking, Science, 273, 884 (1996).
28.G.Gu, V. Bulovic, P.E. Burrows, S. R. Forrest and M.E. Thompson, Appl. Phys. Lett., 68, 2606 (1996).
29.V. Bulovic, G.Gu, P.E. Burrows, S.R. Forrest, and M.E. Thompson, Nature, 380, 29 (1996).
30.G. Gu, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, Optics Letters, 22, 172 (March, 1997).
31.C. Py, D. Roth, I. Levesque, J. Stapledon, A. Donat-Bouillud, Synthetic Metals, l22, 225 (2001).
32.C. Py, M. D''Iorio, Y. Tao, J. Stapledon and P. Marshall, Synthetic Metals, 113, 155 (2000).
33.T.R. Hebner, C.C. Wu, D. Marcy, M.H. Lu, and J.C. Sturm, Appl. Phys. Lett., 72, 519 (1998).
34.J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998).
35.T.R. Hebner, and J.C. Sturm, Appl. Phys. Lett., 73, I775 (1998).
36.Y.Y. Park, H. Cho, Y.M. Son, J. Y. Park, L. Pu, S.K. Yoon, Y.S. Hong, and H. K. Lee, Microelectronic Engineering, 82, 1, (2005).
37.R. H. Jordan, A. Dodabalapur, M. Strukelj, and T.M. Miller, Appl. Phys. Lett., 68, 1192 (1996).
38.S. Tokito, T. Lijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett., 83, 2459 (2003).
39.L.J. Rothberg, and A.J. Lovinger, Journal of Materials Research, 11, 3174 (1996).
40.B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, and M.F. Rubner, Appl. Phys. Lett., 66, 1316 (1995).
41.V. L. Colvin, M. C. Schlamp, and A.P. Alivisatos, Nature, 370, 354 (1994).
42.Y. Yang, and Q. Pei, Appl. Phys. Lett., 68, 2708 (1996).
43.J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, N. Camaioni, and J. Duff, Appl. Phys. Lett., 68, 2317 (1996).
44.T. Mori, K. Obata, K. Imaizumi, and T. Mizutani, Appl. Phys. Lett., 69, 3309 (1996).
45.M. yoshida, A. Fujii, Y. Ohmori, and K. Yoshino, Jpn. J. Appl. Phys. Part 2, 35, L397 (1996).
46.M. Hamaguchi, A.Fujii, Y. Ohmori, and K. Yoshino, Jpn. J. Appl. Phys. Part 2, 35, L1462 (1996).
47.M. B. Khalifa, D. Vaufrey, and J. Tardy, Organic Electronics, 5, 187(2004).
48.P.E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J.A. Cronin, and M.E. Thompson, J. Appl. Phys., 79, 7991(1996).
49.J. Dresner, RCA Rev., 30, 322 (1969).
50.W. Helfrich, and W.G. Schneider, J. Chem. Phys., 44, 2902 (1966).
51.W Helfrich, and F. R. Lipsett, J. Chem. Phys., 43, 4368(1965).
52.D.F. Williams, and M. Schadt, Proc. IEEE, 58, 476 (1970).
53.C. W Tang, S.A. VanSlyke, and C.H. Chen, J. Appt. Phys., 65, 3610 (1989).
54.D. Z. Garbuzov, S.R. Forrest, A.G. Tsekoun, P.E. Burrows, V. Bulovic, and M.E. Thompson, J. Appl. Phys., 80,4644 (1996).
55.B.E.A. Saleh, and M.C. Teich, John Wiley and Sons, New York, 603 (1991).
56.M.A. Baldo, D.F. O''Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Nature, 395, 151(1998).
57.M. A. Baldo, D.F. O''Brien, M.E. Thompson, and S.R. Forrest, Physical Review B, 60, 14422 (1999).
58.G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, Optics Letters, 22, 396 (1997).
59.K. A. Neyts, J. Opt. Soc. Amer. A, 15, 962, (1998).
60.H. Riel, S. Karg, T. Beierlein,W. Ries, and K. Neyts, J. Appl. Phys., 94, 5290, (2003).
61.Z. Huang, C. Lei, D. G. Deppe, C. C. Lin, C. J. Pinzone, and R. D. Dupuis, Appl. Phys. Lett., 61, 2961 (1992).
62.E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, Science, 265, 943, (1994).
63.A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appl. Phys., 80, 6954 (1996).
64.R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Appl. Phys. Lett., 69, 1997 (1996).
65.C.-L. Lin, H.-W. Lin, and C.-C. Wu, Appl. Phys. Lett., 87, 021101 (2005).
66.M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, Appl. Phys. Lett., 81, 3921 (2002).
67.H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, Appl. Phys. Lett., 82, 466 (2003).
68.C.-W. Chen, P.-Y. Hsieh, H.-H. Chiang, C.-L. Lin, H.-M.Wu, and C.-C. Wu, Appl. Phys. Lett., 83, 5127 (2003)
69.S.-F. Hsu, C.-C. Lee, S.-W. Haung, and C. H. Chen, Appl. Phys. Lett., 86,
70.253508 (2005).
71.C.-W. Chen, C.-L. Lin, and C.-C.Wu, Appl. Phys. Lett., 85, 2469 (2004).
72.B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, J. Appl. Phys., 85, 3032 (1999).
73.T. Nakayama, Y. Itoh, and A. Kakuta, Appl. Phys. Lett., 63, 594 (1993).
74.A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett., 65, 2308 (1994).
75.T. Tsutsui, N. Takada, S. Saito, and E. Ogino, Appl. Phys. Lett., 65, 1868 (1994).
76.N. Takada, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 63, 2032 (1993).
77.D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, FL, 2002).
78.C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. H. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett., 83, 5127 (2003).
79.Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett., 386, 128 (2004).
80.M. Bielmann, P. Schwaller, P. Ruffieux, O. Gröning, L. Schlapbach, and P. Gröning, Phys. Rev., B 65, 235431 (2002).
81.U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Thin Solid Films, 429, 129 (2003).
82.T. Minami, K. Shimokawa, and T. Miyata, J. Vac. Sci. Technol. A, 16, 1218 (1998).
83.J. Asbalter and A. Subrahmanyam, J. Vac. Sci. Technol. A, 18, 1672 (2000).
84.G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, Appl. Surf. Sci., 183, 191 (2001).
85.A. A. Schmidt, J. Offermann, and R. Anton, Thin Solid Films, 281, 105 (1996).
86.L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, and G. A. Sawatzky, Phys. Rev. B, 41, 3190 (1990).
87.G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, Appl. Surf. Sci., 183, 191 (2001).
88.L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, and G. A. Sawatzky, Phys. Rev. B, 41, 3190 (1990).
89.J. S. Hammond, S. W. Gaarenstroom, and N. Winograd, Anal. Chem., 47, 2193 (1975).
90.X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Appl. Phys. Lett., 78, 410 (2001).
91.A. Wehnelt, Annalen der Physik, 3, 425 (1904).
92.A. Wehnelt, Philosophical Magazine, 10, 80 (1905).
93.X. Liu, Cathode Electrons, Science Press, Beijing, (1980).
94.A. Shih, G.A. Haas, C.R.K. Marrian, Appl. Surf. Sci., 16, 93 (1983).
95.C.W. Tang and S.A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
96.S.A. VanSlyke, C.H. Chen and C.W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
97.P.E. Burrows, G. Gu, V. Bulovic, S.R. Forrest, and M.E. Thompson, IEEE Trans. Electron Devices, 44, 1188 (1997).
98.G.E. Jabbour, S.E. Shaheen, M.M. Morrell, J.D. Anderson, P. Lee, S. Thayumanavan, S. Barlow, E. Bellmann, R.H. Grubbs, B. Kippelen, S. Marder, N. R. Armstrong, and N. Peyghambarian, IEEE Journal of Quantum Electronics, 36, 12 (2000).
99.J. Kido, K. Nagai, Y. Okamoto, IEEE Trans. Electron Devices 40, 1342 (1993).
100.I.D. Parker, J. Appl. Phys., 75, 1656 (1994).
101.T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron Devices, 44, 1245 (1997).
102.E.I. Haskal, A. Curioni, P.F. Seidler, W. Andreoni, Appl. Phys. Lett., 71, 1151 (1997).
103.L.S. Hung, C.W. Tang, M.G. Mason, Appl. Phys. Lett., 70, 152 (1997).
104.C. Ganzorig, M. Fujihira, Jpn. J. Appl. Phys., 38, L1348 (1999).
105.J. Kido, T. Matsumoto, Appl. Phys. Lett., 73, 2866 (1998).
106.G.E. Jabbour, B. Kippelen, N.R. Armstrong, N. Peyghambarian, Appl. Phys. Lett., 73, 1185 (1998).
107.T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett.,73, 2763 (1998).
108.J. Yoon, J.J. Kim, T.W. Lee, O.O. Park, Appl. Phys. Lett., 76, 2152 (2000).
109.C.W. Tang and S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top