跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳岱煒
研究生(外文):Tai-Wei Chen
論文名稱:肺結核桿菌之暴露評估1.醫院空氣中之肺結核桿菌濃度2.病人呼吸及咳嗽之肺結核桿菌濃度
論文名稱(外文):The exposure assessment of Mycobacterium tuberculosis1.The concentration of Airborne Mycobacterium tuberculosis Profile in a hospital2. The Mycobacterium tuberculosis concentration of the patients breath and cough
指導教授:陳培詩陳培詩引用關係
指導教授(外文):Pei-Shih Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:公共衛生學研究所碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:肺結核桿菌院內感染呼出氣體即時定量聚合酵素反應
外文關鍵詞:M. tuberculosisnosocomial outbreakexhaled gasreal time qPCR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目的:本研究旨在應用filter/real-time qPCR了解肺結核桿菌(Mycobacterium tuberculosis;M.t)在醫院之院內感染區域、高風險區域、低風險區域之分佈情形,並探討結核病人其呼吸及咳嗽時所排放出肺結核桿菌之濃度高低情形。
方法:針對院內感染區域:胸腔科與感染科病房、高風險區域:負壓隔離病房、胸腔科與感染科診間與候診區,以及低風險之眼科病房、小兒科所屬診間、候診區進行空氣採樣,在負壓隔離病房進行病人呼出氣體及咳嗽飛沫之採樣,進行DNA萃取後,並以real-time qPCR進行定量分析。
結果:醫院空氣中肺結核桿菌陽性率為6.25%,皆屬於院內感染區域之胸腔及感染科病房,濃度範圍為54~1109 copies/m3,最大濃度出現在胸腔科之護理站。胸腔科護理站空調改善後,則無偵測到肺結核菌,且其細菌濃度也顯著降低(p=0.010)。空氣中肺結核桿菌存在處,細菌濃度會較高。在空氣中可培養細菌濃度部分,共有122個樣品細菌濃度超過環保署公告之室內空氣品質建議值草案的建議值,不合格率為64%,而真菌之不合格率為8%。胸腔科護理站細菌濃度在空調改善前後皆不符合環保署公告之室內空氣品質建議值。在呼出氣體及咳嗽飛沫部份,病人咳嗽樣品之陽性率為43%(12/28),呼吸樣品之陽性率為21.5%(6/28),以目前的結果來看,咳嗽樣品測試方法的敏感度較佳,且病人之痰液培養及抗酸性鏡檢之結果若皆呈現陰性時,本研究之結果皆呈現陰性,代表本研究的特異性良好。
結論:本研究以filter/real-time qPCR方法證實院內感染區域的空氣中有存在結核菌,在醫院的看診區域則沒有測量出結核菌的存在。在呼出氣體及咳嗽飛沫的部份,發現應用filter/real-time qPCR的亦可偵測出結核桿菌的濃度,且病人咳嗽敏感度較呼吸高,病人的接受度也較高。
Aim: This research is for the purpose of applying filter/real-time the qPCR to understand the distribution of Mycobacterium tuberculosis in the infective area, the high risk area, the low risk area in the hospital, and discuss tuberculosis patient its breath and cough discharges concentration of the Mycobacterium tuberculosis.

Method: To be aimed at the outbreak area : Chest cavity branch and infection branch hospital ward, the high risk area : the negative pressure isolation ward, the chest cavity branch and the infection branch examine with waits to see the doctor the area, as well as ophthalmology department of hospital ward, pediatrics the low risk respectively examine, waits to see the doctor the area to carry on the air sampling, carries on the patient who in the negative pressure isolation ward to exhale the gas and the cough priming sampling of, after carries on the DNA extract, and carries on the quantitative analysis by real-time qPCR.

Result: In the hospital air the Mycobacterium tuberculosis masculine positive rate is 6.25%, all belongs to in the courtyard to infect chest cavity of and the infection branch hospital ward the region, the concentration range is 54~1109 copies/m3, the greatest concentration appears in the nursing station of the chest cavity branch. After the nursing station of the chest cavity branch air conditioning improvement, then not detects the Mycobacterium tuberculosis, also it’s bacterium concentration also reveals is reducing (p = 0.010). In the air the Mycobacterium tuberculosis existence place, the bacterium density can be higher. May the culture of bacteria density be partial in the air, altogether has 122 samples bacteria concentration to surpass room of in the environmental protection bureau announcement the air quality suggestion value draft suggestion value, the failure rate is 64%, but the fungus the failure rate is 8%. The nursing station of the chest cavity branch bacterium concentration around all not to conform to room of in the environmental protection bureau announcement in the air conditioning improvement the air quality suggestion value. In exhales the gas and the cough priming part, the patient coughs masculine positive rate of the sample is 43% (12,/28), masculine positive rate of the breath sample is 21.5% (6,/28), looked by the present result, cough sample test method sensitivity better, also phlegm of fluid raise and the acid resisting mirror the patient examine finally if all presents time the negative, result of the this research all presents the negative, represents this research the specificity to be good.

Conclusion: This research by filter/real-time the qPCR method confirmed in the outbreak area in the air that have the existence Mycobacterium tuberculosis, in the hospital looked examines the region not to survey the Mycobacterium tuberculosis of existence. Is exhaling the gas and the cough priming part, discovered also may detect the bacillus tuberculosis using filter/real-time qPCR the density, also the patient coughs the sensitivity comparatively to breathe high, the patient accepts to be also higher.
摘要 I
第一章 緒論 1
1.1前言 1
1.2研究目的 3
第二章 文獻探討 4
2.1認識肺結核 4
2.1.1肺結核的特性 4
2.1.2肺結核臨床表現 4
2.1.3肺結核病例定義 5
2.2 肺結核之公共衛生問題 6
2.3 空氣中肺結核桿菌之採樣方法 8
2.4 空氣中肺結核桿菌之分析方法 10
2.5 肺結核病人之呼出氣體及咳嗽飛沫研究 12
第三章 研究方法 14
3.1 採樣前準備工作 14
3.2 採樣方法 14
3.2.1 空氣採樣 14
3.2.2 呼出氣體及咳嗽飛沫採樣 15
3.2.2.1 以CLOSE-FACE濾紙匣採集呼氣 16
3.2.2.2 以OPEN-FACE濾紙匣採集咳出飛沫 16
3.3 採樣策略 16
3.3.1 空氣採樣策略 16
3.3.2 呼吸及咳嗽氣體採樣策略 17
3.4 樣品保存方法 18
3.5 DNA萃取方法 18
3.6 標準品之製備 19
3.7 分析方法 20
3.8 抑制效應 21
3.9 統計分析 22
第四章 結果 23
4.1 檢量線之製作 23
4.2 空氣樣品之結果 23
4.2.1 空氣中肺結核桿菌濃度 23
4.2.2 不同區域環境因子比較 24
4.2.3 不同區域細菌、真菌濃度比較 25
4.2.4 空氣中測得結核菌與沒測得結核菌之環境比較 27
4.2.5 胸腔科護理站空調改善前後情形 28
4.3 病人呼出氣體及咳嗽飛沫之結果 29
第五章 討論 30
第六章 結論 35

表目錄
表一:陽性反應樣品結果 40
表二:存在結核菌樣品-環境參數敘述統計 41
表三:環保署室內空氣品質建議值 42
表四:存在結核菌環境中其結核菌、細菌、真菌與環境參數間相關性分析 43
表五:全部樣品-環境參數相關性分析 44
表六:不同區域細菌濃度比較 45
表七:不同區域真菌濃度比較 46
表八:病房及診間候診區之細菌真菌濃度比較 47
表九:眼科病房及胸腔科病房之真菌濃度比較 48
表十:感染科病房及胸腔科病房之真菌濃度比較 49
表十一:感染科候診區及胸腔科診間之真菌濃度比較 50
表十二:存在結核菌與不存在結核菌樣品之環境參數比較 51
表十三:胸腔科護理站空調改善前後比較 52
表十四:呼出氣體及咳嗽飛沫分析結果 53
表十五:偵測極限比較 54
表十六:各研究陽性率比較 55






圖目錄
圖一:1982~2003年美國肺結核通報病例數 57
圖二:台灣及高雄市地區每十萬人口死亡率 58
圖三:台灣及高雄市地區每十萬人口發生率 59
圖四:台北市及高雄市地區每十萬人口死亡率 60
圖五:台北市及高雄市地區每十萬人口發生率 61
圖六:病房採樣裝置 62
圖七:候診區採樣裝置 63
圖八:MERCK MAS-100空氣微生物採樣器 64
圖九:呼出氣體採樣裝置 65
圖十:咳嗽飛沫採樣裝置 66
圖十一:胸腔科病房位置圖 67
圖十二:感染科病房位置圖 68
圖十三:胸腔科、感染科診間及候診區位置圖 69
圖十四:小兒科診間及候診區位置圖 70
圖十五:ABI PRISM 7500 SEQUENCE DETECTION SYSTEM 71
圖十六:肺結核桿菌檢量線 72
圖十七:院內感染區域之細菌、真菌濃度比較 73
圖十八:病房區域之細菌、真菌濃度比較 74
American Thoracic Society. Diagnostic standards and classification of tuberculosis. Am Rev Respir Dis 1990;142:725-35.
Brooks SM, Lassiter NL, Young EC. A pilot study concerning the infection risk of sputum positive tuberculosis patients on chemotherapy. Am Rev Respir Dis 1973; 108:799–804
Davies, C. N., Aylward, M., and Leacey, D. (1951). Impingement of Dust from Air Jets, Arch. Ind. Hyg. Occup. Med. 4: 354–397.
Falkinham, J. O. (1996). Epidemiology of infection by nontuberculosis mycobacteria. Clin. Microbiol. 9:177 -215.
Fennelly, K. P., J. W. Martyny, et al. (2004). Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am J Respir Crit Care Med. 2004 Mar 1;169(5):553-4.
Fairchild A, and Oppenheimer G. Public health nihilism vs. Pragmatism:history, politics, and the control of tuberculosis. Am J Publ Health 1998;88:1105-17.
Grinshpun, S. A., Willeke, K., Ulevicius, V., Juozaitis, A., Terzieva, S., Donnelly, J., Stelma, G. N., and Brenner, K. P. (1997). Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers, Aerosol Sci. Technol. 26:326–342.
Hutton MD, Stead WW, Cauthen GM, Bloch AB, Ewing WM. Nosocomial transmission of tuberculosis associated with a draining abscess. J Infect Dis 1990;161:286-95.
Lyons, C. P. (1992). Sampling Ef. ciencies of All-Glass Midget Impingers, J. Aerosol Sci. 23:S599–S602.
Loudon RG, Roberts RM. Singing and the dissemination of tuberculosis. Am Rev Respir Dis 1968; 98:297–300
Loudon RG, Spohn SK. Cough frequency and infectivity in patients with pulmonary tuberculosis. Am Rev Respir Dis 1969; 99:109–111
Loudon RG, Roberts RM. Droplet expulsion from the respiratory tract. Am Rev Respir Dis 1967; 95:435–442
Li, C. S., Hsu C. W., Tai, M. L., (1997) Indoor pollution and sick building syndrome symptoms among workers in day-care center. Arch. Environ. Health. 52:200-207
Macher, J. M., Alevantis, L. E., Chang, Y. L., and Lie, K. S. (1992). Effect of ultraviolet germicidal lamps on airborne microorganisms in an outpatient waiting room. Applied Occupational and Environmental Hygiene 7:505 - 513.
Martin, G., and Lazarus, A. (2000). Epidemiology and diagnosis of tuberculosis. Recognition of at-risk patients is key to detection. Postgraduate Medicine 108:42 - 44, 47 - 50, 53 - 54.
NIOSH 0900 method. (1998) “Mycobacterium tuberculosis, airborne”, in NIOSH Manual of Analytical Methods, Fourth edition.
Nicas, M., W. W. Nazaroff, et al. (2005). Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. 2005 Mar;2(3):143-54.
Paterson PY. Lower respiratory tract infection: general considerations. In: Youmans GP, Paterson PY, Sommers HM, editors. The biologic and clinical basis of infectious disease. Philadelphia: WB Saunders; 1986. p. 288-308.
Tsai, Y. H., Wan, G. H., Wu, Y. K., and Tsao, K. C. (2006) Airborne severe acute respiratory syndrome coronavirus concentrations in a negative-pressure isolation room. Infect Control Hosp Epidemiol. 27:523-525
Wan, G. H., Lu, S. H., and Tsai Y. H. (2004). Polymerase chain reaction used for the detection of airborne Mycobacterium tuberculosis in health settings. Am. J. Infect. Control 32:17 – 22.
World Health organization. WHO,HO/HTM/STB/factsheet/2006.1(2006)
台中榮民總醫院衛教資訊(2004)
衛生署疾病管制局(2007)
衛生署統計室(2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文