跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉炘
研究生(外文):Chia-Hsin Chen
論文名稱:足部的發展及其生物力學與生理學之效應
論文名稱(外文):The Development and the Biomechanical and Physiological Effects of the Feet
指導教授:王國照黃茂雄黃茂雄引用關係
指導教授(外文):Gwo-Jaw WangMao-Hsiung Huang
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:232
中文關鍵詞:足部發展扁平足足部生物力學足部生理學機械負重
外文關鍵詞:foot developmentflatfootfoot biomechanismfoot physiologymechanical load
相關次數:
  • 被引用被引用:5
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本前瞻性研究的主要目的是探討學童足部的成長及扁平足的定義和發生率,形成扁平足相關因素,如身體質量指數、性別、年齡、地區,及生理功能的表現,如跳遠或跑步能力。足部特殊角度與尿失禁的相關性都在研究中。並進一步進行體內及體外之負重實驗,以探討負重對韌帶或肌腱的影響。
  內側縱弓一直是被認為定義扁平足的主要參考,而足印是足型的評估最常用的工具。所以本研究利用EMED ST-4電容系統的壓力板來測量足底面積、壓力、及足型。足底的形狀是在最大壓力時所馭得,足型及足部的角度則用Novel-Ortho軟體分析,以探討它們與內側縱弓的關係。除了比較足部參數與性別、身高及體重的關係外,並由放射線照片的測量以定義扁平足,同時分析學童扁平足在肥胖、性別、地區與體適能的相關性。另外,利用可調整的踝關節站立架以改變骨盆傾斜的角度,及用陰道探測器測量體盆底肌內收縮時的壓力。再利用分子生物學的方法,測量不同負重對肌腱細胞基因的表現,及沒有負重下,韌帶纖維的組織變化。
  結果顯示足型在男女呈雙型式之分佈,女孩的腳長、腳寬、足跟寬皆比較小,而男孩的足弓下角、足部前進角度、內跗骨角及前蹠角反而比較大。另外足弓下角和放射線照片的跗骨-第一蹠骨角有顯著的相關性,所以利用放射線照片的測量結果,定義足弓下角大於或等於153.5度為扁平足,進而發現足長、足寬、足跟角及足部壓力指數在非扁平足族群比較大,然而,拇趾角、足部前進角度及前蹠角在扁平族群比較大。研究中也顯示身體質量大於95個百分比者,是15~84個百分比者的3.58 倍,男生有扁平足的盛行率是女生的2.42倍,都市學童的盛行率是鄉村學童的4.2倍。另外,扁平足學童的跳遠及跑步能力也比非扁平足學童差。扁平足的人,其足踝背曲範圍較小,有可能日後較易有婦女尿失禁的現象。體外實驗顯示出,4.5%機械負重可有效促進後脛肌肌腱細胞的基因表現,而人體試驗也顯示出,沒有負重會造成韌帶惡化。
  傳統的墨水印雖方便又便宜,然而電容式足印卻容易操作,且可以克服傳統墨水印耗人力的缺點,本研究是第一個以電容壓力板來大量評估學童的動態足印,所得之資料可以探討學童足部的成長的重要變化。足部參數亦可提供扁平足學童製作輔具的參考。研究結果也指出,減重及輔具應可增加學童體適能。而足底肌肉運動及少穿鞋子亦可降低扁平足的發生,同時可能降低婦女尿失禁。由研究的結果得知,機械性的負重會影響肌腱的表現,所以適當的機械性負重會促進纖微母細胞基因的表現,但太多或沒有負重,卻有相反效果,因此,吾人正研究利用機械性負重的新穎模式來治療扁平足的併發症。
The purpose of this prospective study was to investigate the foot evolution in children, flatfoot definition and flatfoot incidence. The factors , such as body mass index, gender, age, district, were studied. Running and jumping performance and the clinical effects on flatfoot children were analyzed. The relationship between ankle positions and women with stress urine incontinence was also investigated. Furthermore, the effects of mechanical load on tendons or ligaments were studied.
The assessment of foot morphology by using footprints is common. Medial longitudinal arch (MLA) has been used as a main reference to diagnose flatfoot. To measure foot types, contact area, pressure, and force variables, we used an EMED ST-4 capacitance mat transducer. These parameters with maximum pressure diagrams were analyzed by using Novel-Ortho software (version 0.87). The relationships between foot parameters and gender, body height or body weight were investigated. Flatfoot definition could be done by analyzing footprints. Therefore, we studied the flatfoot prevalence related to BMI, gender, places and physical activities. To assess pelvic floor muscle (PMF) activity in women with stress urinary incontinence, an adjustable ankle platform was used. PMF activity was measured with an intravaginal probe. In the force study, fibroblast showed gene expression under different mechanical loading by using Flexcell○R Tension Plus TM System. The changes of fiber morphology in stress deprived were measured.
The results showed that sexual dimorphism in foot parameters. Girls had smaller foot length, width and heel width and boys had larger subarch angle, foot progressive angle, medial tarsal angle and anterior plantar angle. Subarch angle indicated well correlated to medial longitudinal arch and was used to define the flatfoot. When the degrees of the subarch angle were greater than 153.5°, a flatfoot was defined. From the results, foot length and width, heel angle and pressure indices were larger in non-flatfoot children. However, hallux angle, progressive angle and anterior plantar angle were larger in flatfoot groups. Higher flatfoot prevalence was also presented in obese children. Children with BMI greater than 95 percentile showed 3.58 times more than those with BMI between 15~85 percentile. Flatfoot prevalence in boys was 2.42 times than that in girls. The prevalence in urban students was 4.2 times than that in rural students. Obese or flatfoot students showed poorer physical fitness. Women with flatfeet might have the tendency of urine stress incontinence in this study. Furthermore, mechanical loading could promote fibroblast gene expression in vitro and human ligaments with stress deprived deteriorated into poor morphologies.
The traditional method of acquiring ink footprint is a simple method measurement, but time-consuming, laborious and messy. Capacitance footprint is an easier way to overcome the disadvantages of obtaining ink footprints. In this study, foot data are useful for feet functional assessment and foot parameters can be applied in orthotic manipulation for flat feet in children. Reduced body weight and suitable orthoses to correct their flat feet may increase their jumping and running abilities. On the other hand, intrinsic muscle training in foot plantar area and reduced duration of footwear would get great benefit to reduce the flatfoot incidence in children. Women with flatfoot may have higher stress urine incontinence. From this study, we also assume that suitable mechanical loading might have promoted tendon or ligament function; however, overload or unload presented negative effects. Novel treatments with mechanical load are expected for the flatfoot children in the future.
博士論文總摘要 1~2
Abstract 3~5
第一章 學童足部成長的變化 1-1~64
第二章 學童扁平足足印參數之測量與放射線照片之關係 2-1~21
第三章 扁平足與非扁平足學童之足部參數比較 3-1~19
第四章 學童扁平足與身體質量指數的關係 4-1~18
第五章 學童扁平足盛行率與性別、年齡、區域的關係 5-1~20
第六章 學童扁平足與立定跳遠能力之探討 6-1~16
第七章 學童扁平足跑步能力之探討 7-1~16
第八章 扁平足與婦女尿失禁之研究 8-1~13
第九章 扁平足後脛肌肌腱受機械負重之影響 9-1~13
第十章 人體肌腱在無負重下的變化 10-1~15
第十一章 結論:研究成果與未來展望 11-1~3
附錄一: 學術論文發表
附錄二: 出席國內外會議
附錄三: 本研究相關論文發表成果
第一章: 參考文獻
1.Staheli LT, Chew DE, Corbett M. The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J Bone Joint Surg Am. 1987 Mar;69(3):426-8
2.Stavlas P, Grivas TB, Michas C, Vasiliadis E, Polyzois V. The evolution of foot morphology in children between 6 and 17 years of age: a cross-sectional study based on footprints in a Mediterranean population. J Foot Ankle Surg. 2005 Nov-Dec;44(6):424-8.
3.Morley AJM. Knock-knee in children. BR Med J 1957;2:976-979
4.Forriol F, Pascual J. Footprint analysis between three and seventeen years of age. Foot Ankle. 1990 Oct;11(2):101-4.
5.McClay I,, Bray J. The subtalar angle: a proposed measure of rearfoot structure. Foot Ankle Int. 1996 Aug;17(8):499-502.
6.Kalen V, Brecher A. Relationship between adolescent bunions and flatfeet. Foot Ankle. 1988 Jun;8(6):331-6.
7.Prichasuk S, Subhadrabandhu T. The relationship of pes planus and calcaneal spur to plantar heel pain. Clin Orthop Relat Res. 1994 Sep;(306):192-6.
8.Simkin A, Leichter I. Role of the calcaneal inclination in the energy storage capacity of the human foot--a biomechanical model. Med Biol Eng Comput. 1990 Mar;28(2):149-52.
9.Cavanagh PR, Rodgers MM. The arch index: a useful measure from footprints. J Biomech. 1987;20(5):547-51.
10.Shiang TY, Lee SH,, Lee SJ, Chu WC. Evaluating different footprint parameters as a predictor of arch height. IEEE Eng Med Biol Mag. 1998 Nov-Dec;17(6):62-6.
11.Cavanagh PR, Morag E,, Boulton AJ, Young MJ, The relationship of static foot structure to dynamic foot function. J Biomech. 1997 Mar;30(3):243-50.
12.Cobey JC, Sella E. Standardizing methods of measurement of foot shape by including the effects of subtalar rotation. Foot Ankle. 1981 Jul;2(1):30-6.
13.Rose GK,, Welton EA,, Marshall T. The diagnosis of flat foot in the child. J Bone Joint Surg Br. 1985 Jan;67(1):71-8.
14.Tareco JM,, Miller NH, MacWilliams BA, Michelson JD. Defining flatfoot. Foot Ankle Int. 1999 Jul;20(7):456-60.
15.Igbigbi PS, Msamati BC.The footprint ratio as a predictor of pes planus: a study of indigenous Malawians. J Foot Ankle Surg. 2002 Nov-Dec;41(6):394-7.
16.Mathieson I, Upton D, Prior TD. Examining the validity of selected measures of foot type: a preliminary study. J Am Podiatr Med Assoc. 2004 May-Jun;94(3):275-81.
17.Kaufman KR, Brodine SK, Shaffer RA, Johnson CW, Cullison TR. The effect of foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med. 1999 Sep-Oct;27(5):585-93.
18.Bryant AR, Tinley P, Singer KP. Normal values of plantar pressure measurements determined using the EMED-SF system. J Am Podiatr Med Assoc. 2000 Jun;90(6):295-9.
19.Joseph B, Bhatia M, Nair NS. Talo-calcaneal relationship in clubfoot. J Pediatr Orthop. 2001 Jan-Feb;21(1):60-4.
20.Hee HT, Lee EH, Lee GS. Gait and pedobarographic patterns of surgically treated clubfeet. J Foot Ankle Surg. 2001 Sep-Oct;40(5):287-94.
21.Volpon JB. Footprint analysis during the growth period. J Pediatr Orthop. 1994 Jan-Feb;14(1):83-5.
22.Quaney B, Meyer K, Cornwall MW, McPoil TG. A comparison of the dynamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot Ankle Int. 1995 Sep;16(9):562-6.
23.Bryant A,, Singer K, Tinley P. Comparison of the reliability of plantar pressure measurements using the two-step and midgait methods of data collection. Foot Ankle Int. 1999 Oct;20(10):646-50.
24.Peters EJ, Urukalo A, Fleischli JG, Lavery LA. Reproducibility of gait analysis variables: one-step versus three-step method of data acquisition. J Foot Ankle Surg. 2002 Jul-Aug;41(4):206-12.
25.van der Leeden M, Dekker JH, Siemonsma PC, Lek-Westerhof SS, Steultjens MP. Reproducibility of plantar pressure measurements in patients with chronic arthritis: a comparison of one-step, two-step, and three-step protocols and an estimate of the number of measurements required. Foot Ankle Int. 2004 Oct;25(10):739-44.
26.Cheng JC, Leung SS, Leung AK, Guo X, Sher A, Mak AF. Change of foot size with weightbearing. A study of 2829 children 3 to 18 years of age. Clin Orthop Relat Res. 1997 Sep;(342):123-31.
27.Fessler DM, Haley KJ, Lal RD. Sexual dimorphism in foot length proportionate to stature. Ann Hum Biol. 2005 Jan-Feb;32(1):44-59.
28.Cheng JC, Leung SS, Chiu BS, Tse PW, Lee CW, Chan AK, Xia G, Leung AK, Xu YY. Can we predict body height from segmental bone length measurements? A study of 3,647 children. J Pediatr Orthop. 1998 May-Jun;18(3):387-93.
29.Giles E, Vallandigham PH. Height estimation from foot and shoeprint length. J Forensic Sci. 1991 Jul;36(4):1134-51.
30.Kouchi M. Inter-generation differences in foot morphology: aging or secular change? J Hum Ergol (Tokyo). 2003 Jun;32(1):23-48.
31.Rao S, Joshi S, Kanade A. Growth in some physical dimensions in relation to adolescent growth spurt among rural Indian children. Ann Hum Biol. 2000 Mar-Apr;27(2):127-38.
32.Liu KM, Shinoda K, Akiyoshi T, Watanabe H. Longitudinal analysis of adolescent growth of foot length and stature of children living in Ogi area of Japan: a 12 years data. Z Morphol Anthropol. 1998;82(1):87-101.
33.Ashizawa K, Kumakura C, Kusumoto A, Narasaki S. Relative foot size and shape to general body size in Javanese, Filipinas and Japanese with special reference to habitual footwear types. Ann Hum Biol. 1997 Mar-Apr;24(2):117-29.
34.Han TR, Paik NJ, Im MS. Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer. Gait Posture. 1999 Dec;10(3):248-54.
35.Kejonen P, Kauranen K, Vanharanta H. The relationship between anthropometric factors and body-balancing movements in postural balance. Arch Phys Med Rehabil. 2003 Jan;84(1):17-22.
36.Menz HB, Morris ME. Footwear characteristics and foot problems in older people. Gerontology. 2005 Sep-Oct;51(5):346-51.
37.Tsung BY, Zhang M, Fan YB, Boone DA. Quantitative comparison of plantar foot shapes under different weight-bearing conditions. J Rehabil Res Dev. 2003 Dec;40(6):517-26.
38.Thordarson DB, Schmotzer H, Chon J, Peters J. Dynamic support of the human longitudinal arch. A biomechanical evaluation. Clin Orthop Relat Res. 1995 Jul;(316):165-72.
39.Spears IR, Miller-Young JE, Waters M, Rome K. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc. 2005 Jun;37(6):1030-6.
40.Chen CH, Huang MH, Chen TW, Weng MC, Lee CL, Wang GJ. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch Phys Med Rehabil. 2006 Feb;87(2):235-40.
41.Mei-Dan O, Kahn G, Zeev A, Rubin A. The medial longitudinal arch as a possible risk factor for ankle sprains: a prospective study in 83 female infantry recruits. Foot Ankle Int. 2005 Feb;26(2):180-3.
42.Bennett PJ, Duplock LR. Pressure distribution beneath the human foot. J Am Podiatr Med Assoc. 1993 Dec;83(12):674-8.
43.Hennig EM, Staats A, Rosenbaum D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 1994 Jan;15(1):35-40.
44.Holmes GB Jr, Timmerman L, Willits NH. Practical considerations for the use of the pedobarograph. Foot Ankle. 1991 Oct;12(2):105-8.
45.Ferrari J, Watkinson D. Foot pressure measurement differences between boys and girls with reference to hallux valgus deformity and hypermobility. Foot Ankle Int. 2005 Sep;26(9):739-47.
46.Kilmartin TE, Wallace WA. The significance of pes planus in juvenile hallux valgus. Foot Ankle. 1992 Feb;13(2):53-6.
47.McClay I, Manal K. The influence of foot abduction on differences between two-dimensional and three-dimensional rearfoot motion. Foot Ankle Int. 1998 Jan;19(1):26-31.
48.Lin CJ, Lai KA, Chou YL, Ho CS. The effect of changing the foot progression angle on the knee adduction moment in normal teenagers. Gait Posture. 2001 Oct;14(2):85-91.
49.Simpson KJ, Jiang P. Foot landing position during gait influences ground reaction forces. Clin Biomech (Bristol, Avon). 1999 Jul;14(6):396-402.
50.Andrews M, Noyes FR, Hewett TE, Andriacchi TP. Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J Orthop Res. 1996 Mar;14(2):289-95.
51.Bowen TR, Miller F, Castagno P, Richards J, Lipton G. A method of dynamic foot-pressure measurement for the evaluation of pediatric orthopaedic foot deformities. J Pediatr Orthop. 1998 Nov-Dec;18(6):789-93.
52.Cooper DM, Dietz FR. Treatment of idiopathic clubfoot. A thirty-year follow-up note. J Bone Joint Surg Am. 1995 Oct;77(10):1477-89.
53.Smahel Z. Effects of body weight on the configuration of the plantar arch (planimetric study). Hum Biol. 1980 Sep;52(3):447-57.
54.Hennig EM, Staats A, Rosenbaum D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 1994 Jan;15(1):35-40.
55.Dowling AM, Steele JR, Baur LA. Can static plantar pressures of prepubertal children be predicted by inked footprints? J Am Podiatr Med Assoc. 2004 Sep-Oct;94(5):429-33.
56.Kapandji I.A.: The Physiology of the joints. Vol (2).Churchill Livingstone. New
57.Rossi WA. Podometrics: a new methodology for foot typing, Contemporary Podiatric Physician 1992;28-39.
58.Ker RF, Bennett MB, Bibby SR, Kester RC, Alexander RM. The spring in the arch of the human foot. Nature. 1987 Jan 8-14;325(7000):147-9.
59.Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995 Jan;76(1):45-9.
60. Suzuki J, Tanaka Y, Takaoka T, Kadono K, Takakura Y. Axial radiographic evaluation in hallux valgus: evaluation of the transverse arch in the forefoot. J Orthop Sci. 2004;9(5):446-51.

第二章:參考文獻
1.Rao UB, Joseph B. The influence of footwear on the prevalence of flat foot.A survey of 2300 children. J Bone Joint Surg 1992;74B:525-7.
2.Igbigbi PS, Msamati BC. The footprint ratio as a predictor of pes planus :a study of indigenous Malawians. J Foot Ankle Surg 2002;41:394-7.
3.Menx HB. Alternative techniques for the clinical assessment of foot pronation. J Am Podiatr Med Assoc 1998;88:119-29.
4.Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int 2001;22:493-8.
5.Huang CK, Kitaoka HB, An KN, Chao EY. Biomechanical evaluation of longitudinal arch stability. Foot Ankle 1993;14::353-7.
6.Cowan DN, Jones BM, Robinson JR. Foot morphologic characteristics and risk of exercise-related injury. Arch Fam Med 1993;2:773-7.
7.Cavanagh PR, Rodgers MM. The arch index: a useful measure from footprints. J Biomech 1987; 20:547-51.
8.Staheli LT, Chew DE, Corbett M. The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J Bone Joint Surg 1987;69A:426-8.
9.Forriol F Pascual J. Footprint analysis between three and seventeen years of age. Foot Ankle 1990;11:101-4.
10.Echarri JJ , Forriol F. The development in footprint morphology in 1851 Congolese children from urban and rural areas, and the relationship between this and wearing shoes. 2001;12; 141-6.
11.Rose GK, Welton EA, Marshall T. The diagnosis of flat foot in the child. J Bone Joint Surg Br 1985;67B:71-8.
12.Kernozek TW, Ricard MD. Foot placement angle and arch type: effect on rearfoot motion Arch Phys Med Rehabil 1990;71:988-91.
13.Welton EA. The Harris and Beath footprint: interpretation and clinical value. Foot Ankle 1992;13:462-8.
14.Cobey JC, Sella E. Standardizing methods of measurement of foot shape by including the effects of subtalar rotation. Foot Ankle 1981;2:30-6.
15.Hawes MR, Nachbauer W, Sovak D, Nigg BM. Footprints as a measure of arch height. Foot Ankle 1992;2:30-6.
16.Vanderwilde R, Staheli LT, Chew DE, Malagon V. Measurements on radiographs of the foot in normal infants and children. J Bone Joint Surg 1988;70A:407-15.
17.Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil 1995;76:;45-9.
18.Cavanaugh PR, Morag E, Boulton AJ, Young MJ, Deffner KT, Pammer SE. The relationship of static foot structure to dynamic foot function. J Biomech 1997;30:243-50.
19.Kanatli U, Yetkin H, Cila E. Foot and radiographic analysis of the feet. J Pediatr Orthop 2001;21:225-8.
20.Kaufman KR, Brodine SK, Shaffer RA, Johnson CW, Cullison TR. The effect foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med 1999;27:585-93.
21.Mathieson I, Upton D, Prior TD. Examining the validity of selected measures of foot type: a preliminary study. J Am Podiatr Med Assoc 2004;94:275-81.
22.Quaney B, Meyer K, Cornwall MW, McPoil TG. A comparison of the dyamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot Ankle Int 1995;16:562-6.
23.Bordelon RL. Correction of hypermobile flatfood in children by molded insert. Foot Ankle 1980;1:143-50.
24.Gilmour JC, BurnsY. The measurement of the medial longitudinal arch in children. Foot Ankle Int 2001;22:493-8.
25.Rossi WA. Podometrics: a new methodology for foot typing, Contemporary Podiatric Physician 1992;28-39.
26.Me-Dan O, Kath G, Zeev A, Rubin A, Constantini N, Even A. Nyska M, Mann G. The medical longitudinal arch as a possible risk factor for ankle sprains: a prospective study in 83 female infantry recruits. Foot Ankle Int 2005;26:180-3.
27.Inman VT. Hallux valgus: a review of etiologic factors. Orthop Clin North Am 1974;5:59-66.
28.Kelen V, Brecher A. Relationship between adolescent bunions and flatfeet. Foot Ankle 1988;8:331-6.
29.Kilmartin TE, Wallace WA. The significant of pes planus in juvenile hallux valgus. Foot Ankle 1992;13:53-6.
30.Hughes J, Kriss S, Kleneerman L. A clinician’s view of pressure: a comparison of three different methods of measurement. Foot and Ankle 1987;7:277-84.
31.Tareco JM, Miller NH, MacWilliams BA, Michelson JD. Defining flatfoot. Foot Ankle Int 1999;20:456-60.
32.Williams DS, McClay IS. Measurement used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther 2000;80:864-71.

第三章:參考文獻
1.Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995 Jan;76(1):45-9.
2.Staheli LT, Chew DE, Corbett M. The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J Bone Joint Surg Am. 1987 Mar;69(3):426-8.
3.Volpon JB. Footprint analysis during the growth period. J Pediatr Orthop. 1994 Jan-Feb;14(1):83-5.
4.Viladot A. Surgical treatment of the child''s flatfoot. Clin Orthop Relat Res. 1992 Oct;(283):34-8.
5.Hawes MR, Nachbauer W, Sovak D, Nigg BM. Footprint parameters as a measure of arch height. Foot Ankle. 1992 Jan;13(1):22-6.
6.Simons GW. A standardized method for the radiographic evaluation of clubfeet. Clin Orthop Relat Res. 1978 Sep;(135):107-18.
7.Kanatli U, Yetkin H, Cila E. Footprint and radiographic analysis of the feet. J Pediatr Orthop. 2001 Mar-Apr;21(2):225-8.
8.Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int. 2001 Jun;22(6):493-8.
9.Chen CH, Huang MH, Chen TW, Weng MC, Lee CL, Wang GJ. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch Phys Med Rehabil. 2006 Feb;87(2):235-40
10.Chen MJ, Chen CP, Lew HL, Hsieh WC, Yang WP, Tang SF. Measurement of forefoot varus angle by laser technology in people with flexible flatfoot. Am J Phys Med Rehabil. 2003 Nov;82(11):842-6.
11.Reimers J, Pedersen B, Brodersen A. Foot deformity and the length of the triceps surae in Danish children between 3 and 17 years old. J Pediatr Orthop B. 1995;4(1):71-3.
12.Anderson JG, Harrington R, Ching RP, Tencer A, Sangeorzan BJ. Alterations in talar morphology associated with adult flatfoot. Foot Ankle Int. 1997 Nov;18(11):705-9.
13.Busseuil C, Freychat P, Guedj EB, Lacour JR. Rearfoot-forefoot orientation and traumatic risk for runners. Foot Ankle Int. 1998 Jan;19(1):32-7.
14.Zifchock RA, Davis I, Hillstrom H, Song J. The effect of gender, age, and lateral dominance on arch height and arch stiffness. Foot Ankle Int. 2006 May;27(5):367-72.
15.Glasoe WM, Allen MK, Ludewig PM. Comparison of first ray dorsal mobility among different forefoot alignments. J Orthop Sports Phys Ther. 2000 Oct;30(10):612-20; discussion 621-3.
16.Kalen V, Brecher A. Relationship between adolescent bunions and flatfeet. Foot Ankle. 1988 Jun;8(6):331-6.
17.King DM, Toolan BC. Associated deformities and hypermobility in hallux valgus: an investigation with weightbearing radiographs. Foot Ankle Int. 2004 Apr;25(4):251-5.
18.Incel NA, Genc H, Yorgancioglu ZR, Erdem HR.. Relation between hallux valgus deformity and lumbar and lower extremity biomechanics. Kaohsiung J Med Sci. 2002 Jul;18(7):329-33.
19.Coughlin MJ. Roger A. Mann Award. Juvenile hallux valgus: etiology and treatment. Foot Ankle Int. 1995 Nov;16(11):682-97.
20.Kitaoka HB, Luo ZP, An KN. Effect of the posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int. 1997 Jan;18(1):43-6.
21.Thordarson DB, Schmotzer H, Chon J, Peters J. Dynamic support of the human longitudinal arch. A biomechanical evaluation. Clin Orthop Relat Res. 1995 Jul;(316):165-72.
22.Deland JT, de Asla RJ, Sung IH, Ernberg LA, Potter HG. Posterior tibial tendon insufficiency: which ligaments are involved? Foot Ankle Int. 2005 Jun;26(6):427-35.
23.Prichasuk S, Subhadrabandhu T. The relationship of pes planus and calcaneal spur to plantar heel pain. Clin Orthop Relat Res. 1994 Sep;(306):192-6.
24.Kernozek TW, Ricard MD. Foot placement angle and arch type: effect on rearfoot motion. : Arch Phys Med Rehabil. 1990 Nov;71(12):988-91.
25.Simpson KJ, Jiang P. Foot landing position during gait influences ground reaction forces. Clin Biomech (Bristol, Avon). 1999 Jul;14(6):396-402.
26.Fuchs R, Staheli LT. Sprinting and intoeing. J Pediatr Orthop. 1996 Jul-Aug;16(4):489-91.
27.Leung AK, Cheng JC, Zhang M, Fan Y, Dong X. Contact force ratio: a new parameter to assess foot arch function. Prosthet Orthot Int. 2004 Aug;28(2):167-74.
28.Dowling AM, Steele JR, Baur LA. Can static plantar pressures of prepubertal children be predicted by inked footprints? J Am Podiatr Med Assoc. 2004 Sep-Oct;94(5):429-33.
29.Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture. 2002 Feb;15(1):1-9.
30.Imhauser CW, Siegler S, Abidi NA, Frankel DZ. The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clin Biomech (Bristol, Avon). 2004 Feb;19(2):161-9.
31.Burns J, Crosbie J, Hunt A, Ouvrier R.. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech (Bristol, Avon). 2005 Nov;20(9):877-82.
32.Hawes MR, Nachbauer W, Sovak D, Nigg BM. Footprint parameters as a measure of arch height. Foot Ankle. 1992 Jan;13(1):22-6.
33.Imhauser CW, Siegler S, Abidi NA, Frankel DZ. The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clin Biomech (Bristol, Avon). 2004 Feb;19(2):161-9.
34.Suzuki J, Tanaka Y, Takaoka T, Kadono K, Takakura Y. Axial radiographic evaluation in hallux valgus: evaluation of the transverse arch in the forefoot. J Orthop Sci. 2004;9(5):446-51.

第四章:參考文獻
1.Bordin D, De Giorgi G, Mazzocco G, Rigon F. Flat and cavus foot, indexes of obesity and overweight in a population of primary-school children. Minerva Pediatr. 2001 Feb;53(1):7-13.
2.Dowling AM, Steele JR, Baur LA. What are the effects of obesity in children on plantar pressure distributions? Int J Obes Relat Metab Disord. 2004 Nov;28(11):1514-9.
3.Hills AP, Hennig EM, McDonald M, Bar-Or O. Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Int J Obes Relat Metab Disord. 2001 Nov;25(11):1674-9.
4.Riddiford-Harland DL, Steele JR, Storlien LH. Does obesity influence foot structure in prepubescent children? Int J Obes Relat Metab Disord. 2000 May;24(5):541-4.
5.Dowling AM, Steele JR, Baur LA. Does obesity influence foot structure and plantar pressure patterns in prepubescent children? Int J Obes Relat Metab Disord. 2001 Jun;25(6):845-52.
6.Wearing SC, Hills AP, Byrne NM, Hennig EM, McDonald M. The arch index: a measure of flat or fat feet? Foot Ankle Int. 2004 Aug;25(8):575-81.
7.Gravante G, Russo G, Pomara F, Ridola C. Comparison of ground reaction forces between obese and control young adults during quiet standing on a baropodometric platform. Clin Biomech (Bristol, Avon). 2003 Oct;18(8):780-2.
8.Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int. 2001 Jun;22(6):493-8.
9.Hill JJ Jr, Cutting PJ. Heel pain and body weight. Foot Ankle. 1989 Apr;9(5):254-6.
10.Lester DK, Buchanan JR. Surgical treatment of plantar fasciitis. Clin Orthop Relat Res. 1984 Jun;(186):202-4.
11.Furey JG. Plantar fasciitis. The painful heel syndrome. J Bone Joint Surg Am. 1975 Jul;57(5):672-3.
12.Snook GA, Chrisman OD. The management of subcalcaneal pain. Clin Orthop Relat Res. 1972 Jan-Feb;82:163-8.
13.McGoey BV, Deitel M, Saplys RJ, Kliman ME. Effect of weight loss on musculoskeletal pain in the morbidly obese. J Bone Joint Surg Br. 1990 Mar;72(2):322-3.
14.Hennig EM, Staats A, Rosenbaum D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 1994 Jan;15(1):35-40.
15.Wenger DR, Mauldin D, Speck G, Morgan D, Lieber RL. Corrective shoes and inserts as treatment for flexible flatfoot in infants and children. J Bone Joint Surg Am. 1989 Jul;71(6):800-10.
16.Welton EA. The Harris and Beath footprint: interpretation and clinical value. Foot Ankle 1992;13:462-8.
第五章:參考文獻
1.Rao UB, Joseph B. The influence of footwear on the prevalence of flat foot. A survey of 2300 children. J Bone Joint Surg Br. 1992 Jul;74(4):525-7.
2.Sachithanandam V, Joseph B. The influence of footwear on the prevalence of flat foot. A survey of 1846 skeletally mature persons. J Bone Joint Surg Br. 1995 Mar;77(2):254-7.
3.Echarri JJ, Forriol F. The development in footprint morphology in 1851 Congolese children from urban and rural areas, and the relationship between this and wearing shoes. J Pediatr Orthop B. 2003 Mar;12(2):141-6.
4.Didia BC, Omu ET, Obuoforibo AA. The use of footprint contact index II for classification of flat feet in a Nigerian population. Foot Ankle. 1987 Apr;7(5):285-9.
5.Cowan DN, Robinson JR, Jones BH, Polly DW Jr, Berrey BH. Consistency of visual assessments of arch height among clinicians. Foot Ankle Int. 1994 Apr;15(4):213-7.
6.Craxford AD, Minns RJ, Park C. Plantar pressures and gait parameters: a study of foot shape and limb rotations in children. J Pediatr Orthop. 1984 Aug;4(4):477-81.
7.Hennig EM, Staats A, Rosenbaum D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 1994 Jan;15(1):35-40.
8.Leung AK, Cheng JC, Mak AF. A cross-sectional study on the development of foot arch function of 2715 Chinese children. Prosthet Orthot Int. 2005 Dec;29(3):241-53.
9.Wenger DR, Mauldin D, Speck G, Morgan D, Lieber RL. Corrective shoes and inserts as treatment for flexible flatfoot in infants and children. J Bone Joint Surg Am. 1989 Jul;71(6):800-10.
10.Chen CH, Huang MH, Chen TW, Weng MC, Lee CL, Wang GJ. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch Phys Med Rehabil. 2006 Feb;87(2):235-40.
11.Volpon JB. Footprint analysis during the growth period. J Pediatr Orthop. 1994 Jan-Feb;14(1):83-5.
12.Rose GK, Welton EA, Marshall T. The diagnosis of flat foot in the child. J Bone Joint Surg Br. 1985 Jan;67(1):71-8.
13.Cappello T, Song KM. Determining treatment of flatfeet in children. Curr Opin Pediatr. 1998 Feb;10(1):77-81.
14.Staheli LT. Evaluation of planovalgus foot deformities with special reference to the natural history. J Am Podiatr Med Assoc. 1987 Jan;77(1):2-6.
15.Chao W, Wapner KL, Lee TH, Adams J, Hecht PJ. Nonoperative management of posterior tibial tendon dysfunction. Foot Ankle Int. 1996 Dec;17(12):736-41.
16.Kohls-Gatzoulis JA, Singh D, Angel JC. Tibialis posterior insufficiency occurring in a patient without peronei: a mechanical etiology. Foot Ankle Int. 2001 Dec;22(12):950-2.
17.Myerson MS, Corrigan J. Treatment of posterior tibial tendon dysfunction with flexor digitorum longus tendon transfer and calcaneal osteotomy. Orthopedics. 1996 May;19(5):383-8.
18.Close JR, Inman VT, Poor PM, Todd FN. The function of the subtalar joint. Clin Orthop Relat Res. 1967 Jan-Feb;50:159-79.
19.Sim-Fook L, Hodgson AR. A comparison of foot forms among the non-shoe and shoe-wearing Chinese population. J Bone Joint Surg Am. 1958 Oct;40-A(5):1058-62.
20.Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995 Jan;76(1):45-9.

第六章:參考文獻
1.Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995 Sep;17(3):197-203.
2.Perttunen JO, Kyrolainen H, Komi PV, Heinonen A.. Biomechanical loading in the triple jump. J Sports Sci. 2000 May;18(5):363-70.
3.Blackburn JR, Morrissey MC. The relationship between open and closed kinetic chain strength of the lower limb and jumping performance. J Orthop Sports Phys Ther. 1998 Jun;27(6):430-5.
4.Kurokawa S, Fukunaga T, Nagano A, Fukashiro S. Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J Appl Physiol. 2003 Dec;95(6):2306-14. Epub 2003 Jul 18.
5.Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13(5):397-406.
6.Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20(2):147-55.
7.Bobbert MF, van Ingen Schenau GJ. Coordination in vertical jumping. J Biomech. 1988;21(3):249-62.
8.Gross TS, Nelson RC. The shock attenuation role of the ankle during landing from a vertical jump. Med Sci Sports Exerc. 1988 Oct;20(5):506-14.
9.Van Boerum DH, Sangeorzan BJ. Biomechanics and pathophysiology of flat foot. Foot Ankle Clin. 2003 Sep;8(3):419-30.
10.Chen W, Lin CC, Peng CT, Li CI, Wu HC, Chiang J, Wu JY, Huang PC. Approaching healthy body mass index norms for children and adolescents from health-related physical fitness. Obes Rev. 2002 Aug;3(3):225-32.
11.Mosier SM, Pomeroy G, Manoli A 2nd. Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop Relat Res. 1999 Aug;(365):12-22.
12.Thordarson DB, Schmotzer H, Chon J, Peters J. Dynamic support of the human longitudinal arch. A biomechanical evaluation. Clin Orthop Relat Res. 1995 Jul;(316):165-72.
13.Evans D. Calcaneo-valgus deformity. J Bone Joint Surg Br. 1975 Aug;57(3):270-8.
14.Toolan BC, Sangeorzan BJ, Hansen ST Jr. Complex reconstruction for the treatment of dorsolateral peritalar subluxation of the foot. Early results after distraction arthrodesis of the calcaneocuboid joint in conjunction with stabilization of, and transfer of the flexor digitorum longus tendon to, the midfoot to treat acquired pes planovalgus in adults. J Bone Joint Surg Am. 1999 Nov;81(11):1545-60.
15.Nyska M, Linge K, McCabe C, Klenerman L. The adaptation of the foot to heavy loads: plantar foot pressures study. Clin Biomech (Bristol, Avon). 1997 Apr;12(3):S8.
16.Niki H, Ching RP, Kiser P, Sangeorzan BJ. The effect of posterior tibial tendon dysfunction on hindfoot kinematics. Foot Ankle Int. 2001 Apr;22(4):292-300.
17.McCormack AP, Niki H, Kiser P, Tencer AF, Sangeorzan BJ. Two reconstructive techniques for flatfoot deformity comparing contact characteristics of the hindfoot joints. Foot Ankle Int. 1998 Jul;19(7):452-61.
18.Beals TC, Pomeroy GC, Manoli A 2nd. Posterior tendon insufficiency: diagnosis and treatment. J Am Acad Orthop Surg. 1999 Mar-Apr;7(2):112-8.
19.Tillman MD, Hass CJ, Chow JW, Brunt D. Lower extremity coupling parameters during locomotion and landings. J Appl Biomech. 2005 Nov;21(4):359-70.
20.Baca A..A comparison of methods for analyzing drop jump performance. Med Sci Sports Exerc. 1999 Mar;31(3):437-42.
21.van Ingen Schenau GJ, Bobbert MF, Rozendal RH. The unique action of bi-articular muscles in complex movements. J Anat. 1987 Dec;155:1-5.
22.Bobbert MF, van Soest AJ. Why do people jump the way they do? Exerc Sport Sci Rev. 2001 Jul;29(3):95-102.
23.Achard de Leluardiere F, Hajri LN, Lacouture P, Duboy J, Frelut ML, Peres G. Validation and influence of anthropometric and kinematic models of obese teenagers in vertical jump performance and mechanical internal energy expenditure. Gait Posture. 2006 Feb;23(2):149-58.
第七章:參考文獻
1.Saha, S. and R.S. Lakes, The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone. J Biomech, 1977. 10(7): p. 393-401.
2.Clement, D.B. and J.E. Taunton, A guide to the prevention of running injuries. Aust Fam Physician, 1981. 10(3): p. 156-61, 163-4.
3.Cowan, D.N., B.H. Jones, and J.R. Robinson, Foot morphologic characteristics and risk of exercise-related injury. Arch Fam Med, 1993. 2(7): p. 773-7.
4.Simkin, A., et al., Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle, 1989. 10(1): p. 25-9.
5.Holden, J.P. and P.R. Cavanagh, The free moment of ground reaction in distance running and its changes with pronation. J Biomech, 1991. 24(10): p. 887-97.
6.Ogon, M., et al., Does arch height affect impact loading at the lower back level in running? Foot Ankle Int, 1999. 20(4): p. 263-6.
7.Wang, X., P.S. Wang, and W. Zhou, Risk factors of military training-related injuries in recruits of Chinese People''s Armed Police Forces. Chin J Traumatol, 2003. 6(1): p. 12-7.
8.Nigg, B.M., G.K. Cole, and W. Nachbauer, Effects of arch height of the foot on angular motion of the lower extremities in running. J Biomech, 1993. 26(8): p. 909-16.
9.Michelson, J.D., D.M. Durant, and E. McFarland, The injury risk associated with pes planus in athletes. Foot Ankle Int, 2002. 23(7): p. 629-33.
10.Hintermann, B. and B.M. Nigg, Pronation in runners. Implications for injuries. Sports Med, 1998. 26(3): p. 169-76.
11.Nigg, B.M., The role of impact forces and foot pronation: a new paradigm. Clin J Sport Med, 2001. 11(1): p. 2-9.
12.Hintermann, B., B.M. Nigg, and C. Sommer, Foot movement and tendon excursion: an in vitro study. Foot Ankle Int, 1994. 15(7): p. 386-95.
13.Williams, D.S., 3rd, I.S. McClay, and J. Hamill, Arch structure and injury patterns in runners. Clin Biomech (Bristol, Avon), 2001. 16(4): p. 341-7.
14.Vicenzino, B., et al., Initial effects of anti-pronation tape on the medial longitudinal arch during walking and running. Br J Sports Med, 2005. 39(12): p. 939-43; discussion 943.
15.Yeap, J.S., D. Singh, and R. Birch, Tibialis posterior tendon dysfunction: a primary or secondary problem? Foot Ankle Int, 2001. 22(1): p. 51-5.
16. Williams DS 3rd, McClay IS, Hamill J. Arch structure and injury patterns in runners. Clin Biomech (Bristol, Avon). 2001 May;16(4):341-7.
17.Subotnick, S.I. and P. Sisney, Treatment of Achilles tendinopathy in the athlete. J Am Podiatr Med Assoc, 1986. 76(10): p. 552-7.
18.Subotnick, S.I., The biomechanics of running. Implications for the prevention of foot injuries. Sports Med, 1985. 2(2): p. 144-53.
19. Tiberio D Pathomechanics of structural foot deformities. Phys Ther. 1988 Dec;68(12):1840-9.
20.Sommer, H.M. and S.W. Vallentyne, Effect of foot posture on the incidence of medial tibial stress syndrome. Med Sci Sports Exerc, 1995. 27(6): p. 800-4.
21.Nyska, M., et al., The adaptation of the foot to heavy loads: plantar foot pressures study. Clin Biomech (Bristol, Avon), 1997. 12(3): p. S8.
22.Lees, A., M. Lake, and L. Klenerman, Shock absorption during forefoot running and its relationship to medial longitudinal arch height. Foot Ankle Int, 2005. 26(12): p. 1081-8.
23.Drinkard, B., et al., Relationships between walk/run performance and cardiorespiratory fitness in adolescents who are overweight. Phys Ther, 2001. 81(12): p. 1889-96.
24.Beets, M.W. and K.H. Pitetti, One-mile run/walk and body mass index of an ethnically diverse sample of youth. Med Sci Sports Exerc, 2004. 36(10): p. 1796-803.
25.Bar-Or, O., Physical activity and physical training in childhood obesity. J Sports Med Phys Fitness, 1993. 33(4): p. 323-9.
26.Deforche, B., et al., Physical fitness and physical activity in obese and nonobese Flemish youth. Obes Res, 2003. 11(3): p. 434-41.

第八章:參考文獻
1.Baumhauer JF, Alosa DM, Renstrom AF,et al: A prospective study of ankle injury risk factors, Am J Sports Med. 1995 Sep-Oct;23(5):564-70.
2.Gaillet JC, Biraud JC, Bessou M, et al: Modifications of baropodograms after transcutaneous electric stimulation of the abductor hallucis muscle in humans standing erect. Clin Biomech (Bristol, Avon). 2004 Dec;19(10):1066-9
3. Bennett PJ, Duplock LR.: Pressure distribution beneath the human foot. J Am Podiatr Med Assoc. 1993 Dec;83(12):674-8.
4. Sutherland DH. An electromyographic study of the plantar flexors of the ankle in normal walking on the level. J Bone Joint Surg Am. 1966 Jan;48(1):66-71
5. Niki H, Ching RP, Kiser P, et al: The effect of posterior tibial tendon dysfunction on hindfoot kinematics. Foot Ankle Int. 2001 Apr;22(4):292-300.
6. Nygaard IE, Glowacki C, Saltzman CL.: Relationship between foot flexibility and urinary incontinence in nulliparous varsity athletes. Obstet Gynecol. 1996 Jun;87(6):1049-51.
7. Aukee P, Immonen P, Penttinen J, et al.: Increase in pelvic floor muscle activity after 12 weeks'' training: a randomized prospective pilot study. Urology 60:1020-1023, 2002.
8.Aukee P, Penttinen J, Airaksinen O: The effect of aging on the     electromyographic activity of pelvic floor muscles. A comparative study among stress incontinent patients and asymptomatic women. Maturitas 44:253-257, 2003.
9.Aukee P, Immonen P, Laaksonen DE, et al.: The effect of home biofeedback training on stress incontinence. Acta Obstet Gynecol Scand 83:973-977, 2004.
10.Dörflinger A, Gorton E, Stanton S, et al.: Urethral pressure profile: is it affected by position? Neurourol Urodyn 21:553-557, 2002.
11.Bo K, Finckenhagen HB: Is there any difference in measurement of pelvic floor muscle strength in supine and standing position? Acta Obstet Gynecol Scand 82:1120-1124, 2003.
12.Klarskov P, Hald T: Reproducibility and reliability of urinary incontinence assessment with a 60 min test. Scand J Urol Nephrol 18:293-298, 1984.
13.Abitbol MM: The shapes of the female pelvis. contributing factors. J Reprod Med 42:242-50, 1996.
14.Bendix T, Sørensen SS, Klausen K: Lumbar curve, trunk muscles, and line of gravity with different heel heights. Spine 9:223-227, 1984
15.Kapandji IA: The Physiology Of The Joints, The Trunk And The Vertebral Column Vol. 3 New York, Churchill Livingston, 1995.
16.Nygaard IE, Glowacki C, Saltzman CL: Relationship between foot flexibility and urinary incontinence in nulliparous varsity athletes. Obstet Gynecol 87:1049-1051, 1996.
17.Voloshin A, Wosk J. An in vivo study of low back pain and shock absorption in the human locomotor system. J Biomech. 1982;15(1):21-7.
18.Simkin A, Leichter I, Giladi M,et al: Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle. 1989 Aug;10(1):25-9.
19. Nawoczenski DA, Cook TM, Saltzman CL. The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J Orthop Sports Phys Ther. 1995 Jun;21(6):317-27.
20.Kidder SM, Abuzzahab FS Jr, Harris GF,etal: A system for the analysis of foot and ankle kinematics during gait. IEEE Trans Rehabil Eng. 1996 Mar;4(1):25-32.
第九章:參考文獻
1.Van Boerum DH, Sangeorzan BJ: Biomechanics and pathophysiology of flat foot. Foot Ankle Clin 2003;8:419-30.
2.Weinraub GM, Saraiya MJ: Adult flatfoot/posterior tibial tendon dysfunction: classification and treatment. Clin Podiatr Med Surg 2002;19:345-70, v.
3.Holmes GB, Jr., Mann RA: Possible epidemiological factors associated with rupture of the posterior tibial tendon. Foot Ankle 1992;13:70-9.
4.Petersen W, Hohmann G, Pufe T, et al.: Structure of the human tibialis posterior tendon. Arch Orthop Trauma Surg 2004;124:237-42.
5.Arnoczky SP, Tian T, Lavagnino M, et al. P: Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 2002;20:947-52.
6.Kim,S.G., Akaike,T., Sasagaw,T., Atomi,Y., & Kurosawa,H. (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Structure and Function 27, 139-144.
7.Skutek M, van Griensven M, Zeichen J, et al.: Cyclic mechanical stretching of human patellar tendon fibroblasts: activation of JNK and modulation of apoptosis. Knee Surg Sports Traumatol Arthrosc 2003;11:122-9.
8.Zeichen J, van Griensven M, Bosch U: The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 2000;28:888-92.
9.Bhide,V. M., Laschinger, C. A., Arora, P. D., Lee, W., Hakkinen, L., Larjava, H., Sodek, J., & McCulloch, C. A. Collagen phagocytosis by fibroblasts is regulated by decorin. The Journal of Biological Chemistry 2005; 280: 23103-23113.
10.Lee, C. Y., Liu, X., Smith, C. L., Zhang, X., Hsu, H. C., Wang, D. Y., & Luo, Z. P. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biology 2004; 23:323-329.
11.Hsieh AH, Tsai CM, Ma QJ, et al.: Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 2000;18:220-7.
12.Upton, M. L., Chen, J., Guilak, F., & Setton, L. A. Differential effects of static and dynamic compression on meniscal cell gene expression. Journal of Orthopedic Research 2003;21:963-969.
13.Neidlinger-Wilke, C., Wilke, H. J., & Claes, L. Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. Journal of Orthopedic Research 1994;12:70-78.
14.Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., & Montevecchi, F. M. Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. Journal of Biomechanic 2003;36: 1555-1569.
15.Read MT, Motto SG: Tendo Achillis pain: steroids and outcome. Br J Sports Med 1992;26:15-21.
16.Sini P, Denti A, Tira ME, et al.: Role of decorin on in vitro fibrillogenesis of type I collagen. Glycoconj J 1997;14:871-4.
17.Iozzo RV: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 1999;274:18843-6.
18.Kannus P: Structure of the tendon connective tissue. Scand J Med Sci Sports 2000;10:312-20.
19.Fu SC, Wong YP, Cheuk YC, et al.: TGF-beta1 reverses the effects of matrix anchorage on the gene expression of decorin and procollagen type I in tendon fibroblasts. Clin Orthop Relat Res 2005;226-32.
第十章:參考文獻
1.Goldner JL, Keats PK, Bassett FH 3rd, Clippinger FW. Progressive talipes equinovalgus due to trauma or degeneration of the posterior tibial tendon and medial plantar ligaments. Orthop Clin North Am. 1974 Jan;5(1):39-51.
2.Mosier SM, Pomeroy G, Manoli A 2nd. Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop Relat Res. 1999 Aug;(365):12-22.
3.Janis LR, Wagner JT, Kravitz RD, Greenberg JJ. Posterior tibial tendon rupture: classification, modified surgical repair, and retrospective study. J Foot Ankle Surg. 1993;32(1):2-13.
4.Schollmeier G, Uhthoff HK, Sarkar K, Fukuhara K. Effects of immobilization on the capsule of the canine glenohumeral joint. A structural functional study. Clin Orthop 1994; 37-42.
5.Akeson WH, Amiel D, Abel MF, et al. Effects of immobilization on joints. Clin Orthop 1987;28-37.
6.Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 1990;18:292-9.
7.Shelbourne KD, Klootwyk TE, Wilckens JH, et al. Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med 1995;23:575-9.
8.Klein L, Player JS, Heiple KG, et al. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs. J Bone Joint Surg Am 1982;64: 225-230.
9.Amiel D, Akeson WH, Harwood FL, et al. Stress deprivation effect on metabolic turnover of the medial collateral ligament collagen. A comparison between nine- and 12-week immobilization. Clin Orthop 1983;265-270.
10.Binkley JM, Peat M. The effects of immobilization on the ultrastructure and mechanical properties of the medial collateral ligament of rats. Clin Orthop 1986;301-8
11.Kanda T, Ochi M, Ikuta Y. Adverse effects on rabbit anterior cruciate ligament after knee immobilization: changes in permeability of horseradish peroxidase. Arch Orthop Trauma Surg 1998;117:307-11.
12.Murray MM, Martin SD, Martin TL, et al. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 2000;82-A:1387-97.
13.Hayashi K. Biomechanical studies of the remodeling of knee joint tendons and ligaments. J Biomech 1996;29:707-16.
14.Anderson AF, Lipscomb AB. Analysis of rehabilitation techniques after anterior cruciate reconstruction. Am J Sports Med 1989;17:154-160.
15.Newton PO, Woo SL, MacKenna DA, et al. Immobilization of the knee joint alters the mechanical and ultrastructural properties of the rabbit anterior cruciate ligament. J Orthop Res 1995;13:191-200.
16.Arvidsson I, Arvidsson H, Eriksson E, et al. Prevention of quadriceps wasting after immobilization: an evaluation of the effect of electrical stimulation. Orthopedics 1986;9:1519-28.
17.Trudel G, Himori K, Uhthoff HK. Contrasting alterations of apposed and unapposed articular cartilage during joint contracture formation. Arch Phys Med Rehabil 2005;86: 90-97.
18.Laros GS, Tipton CM, Cooper RR. Influence of physical activity on ligament insertions in the knees of dogs. J Bone Joint Surg Am 1971;53:275-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top