跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林才民
研究生(外文):Tsai-Ming Lin
論文名稱:人類脂源性和源自脂肪瘤的間葉幹細胞之培養及特性探討
論文名稱(外文):Isolation and Characterization of Human Adipose and Lipoma Tissue-derived Mesenchymal Stem Cells
指導教授:林幸道林幸道引用關係
指導教授(外文):Sin-Daw Lin
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:109
中文關鍵詞:間葉幹細胞脂肪組織脂肪瘤多潛能性
外文關鍵詞:Mesenchymal stem cellAdipose tissueLipomaMultipotential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類間葉幹細胞(Mesenchymal Stem Cells, MSCs)已經從骨髓(Bone marrow)及其他許多成體組織被培養出來,並且有潛力成為組織工程學(Tissue engineering)之重要角色。就脂肪組織(Adipose tissue)而言,它具有一些優點如來源豐富、容易大量獲得、相對上較少宗教道德考量及法律限制,使它成為獲取幹細胞的良好起始材料。然而,現有擴張脂源性間葉幹細胞(Adipose-derived Mesenchymal Stem Cells, ADMSCs)數目的方法卻不甚理想!
因此,我們提出一個新的幹細胞培養技術,藉以大量加快脂源性間葉幹細胞的生長速度並延長其生命期限(lifespan);這方法使用低鈣離子濃度的細胞生長培養基並添加了N-acetyl-L-cysteine及L-ascorbic acid 2-phosphate,在這些間葉幹細胞的培養過程中,早期的細胞便呈現多潛能性(multipotent)的幹細胞特性;包括了在軟凝膠(soft agar)上表現高頻率的非停泊依賴性生長(anchorage independent growth, AIG)、外表呈現匐行狀(serpiginous)的細胞缺乏細胞間裂口接合性交流(gap junctional intercellular communication, GJIC)及在短期間內有極高的累計性細胞族群總數倍增程度(cumulative population doubling level, cpdl)之現象等;此外這些間葉幹細胞可輕易地被誘導分化成脂肪細胞(adipocytes)、骨細胞(osteoblasts)及軟骨細胞(chondrocytes)等。因此,藉由對細胞生長培養基的改變-即使用低濃度鈣離子和添加抗氧化物,我們大大地提高這些多潛能性(multipotential)脂源性間葉幹細胞(ADMSCs)的生長速度及延長了他們的生命期限。
根據這個新的幹細胞培養技術,我們也成功地從人類良性脂肪瘤(lipoma)培養出間葉幹細胞(Mesenchymal Stem Cells, MSCs),並且發現同樣具有各種間葉幹細胞的特性:如在軟凝膠上表現高頻率的非停泊依賴性生長(AIG)、外表呈現匐行狀之細胞缺乏細胞間裂口接合性交流(GJIC)、可輕易地被誘導分化成脂肪細胞(adipocytes)、骨細胞(osteoblasts)及軟骨細胞(chondrocytes)及具備在短期間內有極高的累計性細胞族群總數倍增程度(cpdl)。
我們利用5-Azacytidine誘導脂源性間葉幹細胞(ADMSCs)二十四小時後,可見有如心肌狀的細胞出現,並且在免疫螢光染色下呈現α- actinin及Troponin I正反應現象。並且這兩種間葉幹細胞-脂源性間葉幹細胞(ADMSCs)及源自脂肪瘤之間葉幹細胞(Lipoma-Derived Mesenchymal Stem Cells, LDMSCs)在Statin類的藥物Fluvastatin之誘導下轉分化(trans-differentiation)成表現出GFAP(glial fibrillary acidic protein)及MAP (microtubule-associated protein)螢光正反應的神經膠質細胞(neuroglial cells)。除此之外,這兩種間葉幹細胞都明確地表現出Oct-4 (Octamer-4)及h-TERT (human telomerase reverse transcriptase)的基因型。
我們建立一種新的幹細胞培養方法,成功地從人類脂肪組織及脂肪瘤培養出間葉幹細胞,除了可以在短期間內提高這些多潛能性(multipotential)間葉幹細胞(MSCs)的生長速度及延長了他們的生命期限外,更可以將所培養出的間葉幹細胞(MSCs)分化成心肌細胞(cardiomyocyte)及神經膠質細胞(neuroglial cell),為未來的幹細胞研究(stem cell research)、組織工程學(tissue engineering)、移植醫學(transplantation medicine)、腫瘤醫學(oncology Medicine)及再生醫學(reparative medicine)架構一個有效可用的研究平臺。
Human mesencyhmal stem cells have been isolated from bone marrow and other adult tissues and are potentially useful for tissue engineering. Adipose tissue has several clear advantages as a starting material for harvesting stem cells, as it is abundant and relatively easy to procure, less restriction in law, and molarity or ethic concerns. However, existing methods to expand adipose-derived mesenchymal stem cells are less than optimal.
Here we describe a new cell-culture method that accelerates greatly the growth rate and prolongs the lifespan of adipose mesenchymal stem cells. This was accomplished by using a growth medium with low calcium and supplementing with N-acetyl-L-cysteine and L-ascorbic acid 2-phosphate. Cells produced early in these cultures displayed characteristics similar to those previously reported for pluripotential stem cells, including high frequency of anchorage-independent growth in soft agar, a lack of gap junctional intercellular communication in a cell type with serpiginous morphology, and high cumulative population doubling level in a shorter time. These cells could readily be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. Thus, modification of the growth medium by reduction of calcium and addition of antioxidants greatly enhanced the growth rate and extended the lifespan of adipose-derived multi-potential human mesenchymal stem cells.
Applying this novel technique, we successfully isolated mesenchymal stem cells from human lipoma possessing variable-characteristic stem cell features including high frequency of anchorage-independent growth in soft agar, lack of gap junctional intercellular communication in serpiginous cells, ready differentiation into adipocytes, osteoblasts, chondrocytes, and high cumulative population doubling level in a shorter time.
Twenty four hours after induction by 5-Azacytidine, adipose-derived mesenchymal stem cells (ADMSCs) appeared to be cardiomyocyte-like in morphology with positive α-actinin and Troponin I immunostain. When induced by statin drug (Fluvastatin), these two kinds of mesenchymal stem cells – adipose-derived mesenchymal stem cells (ADMSCs) and lipoma-derived mesenchymal stem cells (LDMSCs) -- were trans-differentiated into neuroglial cells stained positively with GFAP (glial fibrillary acidic protein) and MAP (microtubule-associated protein). In addition, these mesenchymal stem cells expressed genotype of Oct-4 (Octamer-4) and h-TERT (human telomerase reverse transcriptase).
We developed a novel method for cultivating mesenchymal stem cells from human adipose tissue and lipoma. Not only could high growth rate and extended life expectancy of those mesenchymal stem cells be observed, but these mesenchymal stem cells could be induced into cardiomyocytes and neuroglial cells. In this way, the study provides an effective and useful platform for future study in stem cell research, tissue engineering, transplantation medicine, oncology medicine, and reparative medicine.
目錄
中文摘要 1
英文摘要 4
第一章:研究背景 6
第二章: 材料與方法 13
A. 培養及特性化人類脂源性幹細胞 13
1. 細胞培養基質的選擇 (CELL CULTURE MEDIA) 13
2. 從人類脂肪組織發展出初步細胞培養的方法 14
(DEVELOPMENT OF PRIMARY CELL CULTURES FROM HUMAN ADIPOSE TISSUE) 14
3. 細胞間裂口接合性交流 15
(GAP JUNCTIONAL INTERCELLULAR COMMUNICATION, GJIC) 15
4. 累計性細胞族群總數倍增程度 18
(CUMULATIVE POPULATION DOUBLING LEVEL, CPDL) 18
5. 非停泊依賴性生長 19
(ANCHORAGE INDEPENDENT GROWTH, AIG ) 19
6. 多族系分化–脂肪生成、軟骨生成、骨生成、肌肉生成 20
(MULTILINEAGE DIFFERENTIATION–ADIPOGENESIS、CHONDROGENESIS、OSTEOGENESIS、AND MYOGENESIS) 20
7. 鈣化的細胞外基質之鈣離子定量測定 27
(QUANTITATIVE ASSAY OF CALCIUM IN CALCIFIED EXTRACELLULAR MATRIX) 27
B. 從人類脂肪瘤培養出間葉幹細胞 28
1. 細胞培養基質的選擇 28
(CELL CULTURE MEDIA) 28
2. 細胞間裂口接合性交流 29
(GAP JUNCTIONAL INTERCELLULAR COMMUNICATION, GJIC) 29
3. 累計性細胞族群總數倍增程度 29
(CUMULATIVE POPULATION DOUBLING LEVEL, CPDL) 29
4. 非停泊依賴性生長 29
(ANCHORAGE INDEPENDENT GROWTH, AIG ) 29
5. 多族系分化–脂肪生成、軟骨生成、骨生成 30
(MULTILINEAGE DIFFERENTIATION–ADIPOGENESIS、CHONDROGENESIS、AND OSTEOGENESIS) 30
6. OCT-4及H-TERT基因型的表現測定 31
(EXPRESSION OF OCT-4 AND H-TERT IN ADMSCS AND LDMSCS) 31
C. 從人類脂源性間葉幹細胞到心肌細胞 34
1. 細胞誘導分化成心肌細胞 34
(INDUCTION OF ADMSCS INTO CARDIOMYOCYTE) 34
2. 推定的心肌細胞之ΑLPHA- ACTININ AND TROPONIN I免疫螢光染色 34
(ΑLPHA- ACTININ AND TROPONIN I IMMUNOSTAIN OF PUTATIVE CARDIOMYOCYTES) 34
D. 從人類間葉幹細胞到神經膠質細胞 36
1. 轉分化誘導脂源性及源自脂肪瘤之間葉幹細胞成神經膠質細胞 36
(TRANS-DIFFERENTIATION OF ADMSCS AND LDMSCS INTO NEUROGLIAL CELLS) 36
2. 推定性的神經膠質細胞之GFAP及MAP免疫螢光染色 36
(GFAP AND MAP IMMUNOSTAIN OF PUTATIVE NEUROGLIAL CELLS) 36
第三章: 結果 38
A. 培養及特性化人類脂源性幹細胞 38
1. 建立從人類脂肪組織的原始細胞培養 38
(DEVELOPMENT OF PRIMARY CELL CULTURES FROM HUMAN ADIPOSE TISSUE) 38
2. 推定的脂源性幹細胞/源袓細胞之對稱性與不對稱性 分裂 39
(SYMMETRIC AND ASYMMETRIC DIVISION OF PUTATIVE ADIPOSE-DERIVED STEM/PROGENITOR CELLS) 39
3. 推定的脂源性幹細胞/源組細胞之增生潛能 40
(PROLIFERATION POTENTIAL OF PUTATIVE ADIPOSE-DERIVED STEM/PROGENITOR CELLS) 40
4. 非停泊依賴性生長的能力 41
(ABILITY OF ANCHORAGE INDEPENDENT GROWTH) 41
5. 細胞間裂口接合性交流 42
(GAP JUNCTIONAL INTERCELLULAR COMMUNICATION, GJIC) 42
6. 誘導多族系間葉細胞分化 43
(INDUCTION OF MULTILINEAGE MESENCHYMAL CELL DIFFERENTIATION) 43
B. 從人類脂肪瘤培養出間葉幹細胞 50
1. 建立從人類脂肪瘤組織的原始細胞培養 50
(DEVELOPMENT OF PRIMARY CELL CULTURES FROM HUMAN LIPOMA TISSUE) 50
2. 推定的源自脂肪瘤之間葉幹細胞脂之對稱性與不對稱性分裂 51
(SYMMETRIC AND ASYMMETRIC DIVISION OF PUTATIVE LIPOMA-DERIVED MESENCHYMAL STEM CELLS) 51
3. 推定的脂源性幹細胞/源組細胞之增生潛能 52
(PROLIFERATION POTENTIAL OF PUTATIVE ADIPOSE-DERIVED STEM/PROGENITOR CELLS) 52
4. 非停泊依賴性生長的能力 54
(ABILITY OF ANCHORAGE INDEPENDENT GROWTH) 54
5. 細胞間裂口接合性交流 54
(GAP JUNCTIONAL INTERCELLULAR COMMUNICATION, GJIC) 54
6. 誘導多族系之間葉細胞分化 55
(INDUCTION OF MULTILINEAGE MESENCHYMAL CELL DIFFERENTIATION) 55
7. OCT-4及H-TERT基因型的表現測定 60
(EXPRESSION OF OCT-4 AND H-TERT IN ADMSCS AND LDMSCS) 60
C. 從人類脂源性幹細胞到心肌細胞 63
D. 從人類間葉幹細胞到神經膠質細胞 65
第四章: 討論 68
A. K-NAC培養液的優點及可運用之延伸 68
B. 人類脂源性間葉幹細胞之特色及獨特之基因表現 70
C. 人類脂源性間葉幹細胞在醫學領域的運用 71
D. 發現源自人類脂肪瘤之間葉幹細胞所提供的訊息與運用 72
E. 心肌細胞的分化與神經膠質細胞的轉分化之臨床潛力 74
第五章: 結論 76
參考文獻 78
附錄: 發表之論文 98
1.Bach SP, Renehan AG and Potten CS. (2000). Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21:469-76.
2.Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282:1145-7.
3.Gearhart J. (1998). New potential for human embryonic stem cells. Sience. 282:1061-2.
4.Pommey S and Galipeau J. (2006). The use of mesenchymal stromal cells in oncology and cell therapy. Bull Cancer. 93:901-7.
5.Steinwender C, Hofmann R, Kammler J, Kypta A, Pichler R, Maschek W, Schuster G, Gabriel C and Leisch F. (2006). Effects of peripheral blood stem cell mobilization with granulocyte-colony stimulating factor and their transcoronary transplantation after primary stent implantation for acute myocardial infarction. Am Heart J. 151:1296.e7-13.
6.Li J, Imitola J, Snyder EY and Sidman RL. (2006). Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 26:7839-48.
7.Ferretti P, Mackay M and Walder S. (2006). The developing human spinal cord contains distinct populations of neural precursors. Neurodegener Dis. 3:38-44.
8.Laino G, Carinci F, Graziano A, d''Aquino R, Lanza V, De Rosa A, Gombos F, Caruso F, Guida L, Rullo R, Menditti D and Papaccio G. (2006). In vitro bone production using stem cells derived from human dental pulp.J Craniofac Surg. 17:511-5.
9.Margariti A, Zeng L and Xu Q. (2006). Stem cells, vascular smooth muscle cells and atherosclerosis.Histol Histopathol. 21:979-85.
10.Shi X and Garry DJ. (2006). Muscle stem cells in development, regeneration, and disease. Genes Dev. 20:1692-708.
11.Bickenbach JR, Stern MM, Grinnell KL, Manuel A and Chinnathambi S. (2006). Epidermal stem cells have the potential to assist in healing damaged tissues. J Invest Dermatol. 126 Suppl:118-23.
12.Potten CS and Ellis JR. (2006). Adult small intestinal stem cells: identification, location, characteristics, and clinical applications. Ernst Schering Res Found Workshop. 60:81-98.
13.Vascotto SG and Griffith M. (2006). Localization of candidate stem and progenitor cell markers within the human cornea, limbus, and bulbar conjunctiva in vivo and in cell culture. Anat Rec A Discov Mol Cell Evol Biol. 288:921-31.
14.Goureau O and Sahel JA. (2006). Retinal stem cells: mechanism of differentiation and therapeutic application. Pathol Biol. 54:64-71.
15.Fiegel HC, Lange C, Kneser U, Lambrecht W, Zander AR, Rogiers X and Kluth D. (2006). Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med. 10:577-87.
16.Di Gioacchino G, Di Campli C, Zocco MA, Piscaglia AC, Novi M, Santoro M, Santoliquido A, Flore R, Tondi P, Pola P, Gasbarrini G and Gasbarrini A. (2006). Transdifferentiation of stem cells in pancreatic cells: state of the art. Transplant Proc. 37:2662-3.
17.Lee HS, Huang GT, Chiang H, Chiou LL, Chen MH, Hsieh CH and Jiang CC. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 21:190-9.
18.Chan RJ and Yoder MC. (2004). The multiple facets of hematopoietic stem cells. Curr Neurovasc Res. 1:197-206.
19.Oyan B, Koc Y, Ozdemir E, Kars A, Turker A, Tekuzman G and Kansu E. (2006). High dose sequential chemotherapy and autologous stem cell transplantation in patients with relapsed/refractory lymphoma. Leuk Lymphoma. 47:1545-52.
20.El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, Sanberg CD and Sanberg PR. (2006). Cord blood mesenchymal stem cells: potential use in neurological disorders. Stem Cells Dev. 15:497-506.
21.Zhang Y, Chai C, Jiang XS, Teoh SH and Leong KW. (2006). Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng. 12:2161-70.
22.Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK and Domanska-Janik K. (2006). Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev. 15:391-406.
23.El-Badri NS. (2006). Cord blood stem cells: a fountain of youth for the brain. Stem Cells Dev. 15:293-4.
24.Schoemans H, Theunissen K, Maertens J, Boogaerts M, Verfaillie C and Wagner J. (2006). Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant. 38:83-93.
25.Caplan AI and Bruder SP. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259-64.
26.Minguell JJ, Erices A and Conget P. (2001). Mesenchymal stem cells. Exp Biol Med 226:507-20.
27.Woodbury D, Schwarz EJ, Prockop DJ and Black IB. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364-70.
28.Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR and Sanberg PR. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247-56.
29.Deng W, Obrocka M, Fischer I and Prockop DJ. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148-52.
30.Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P and Hedrick MH. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279-95.
31.Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P and Hedrick MH. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922-31.
32.Koc ON and Lazarus HM. (2001). Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 2:235-39.
33.Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ and Andreeff M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603-8.
34.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143-7.
35.Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211-28.
36.Sottile V, Halleux C, Bassilana F, Keller H and Seuwen K. (2002). Stem cell characteristics of human trabecular bone-derived cells. Bone 30:699-704.
37.Erices A, Conget P and Minguell JJ. (2000). Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235-42.
38.Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO and Wall DA. (2001). Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581-8.
39.Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL and Chen TH. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669-75.
40.De Bari C, Dell''Accio F, Tylzanowski P and Luyten FP. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928-42.
41.Bruder SP, Jaiswal N and Haynesworth SE. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278-94.
42.Linning KD, Tai MH, Madhukar BV, Chang CC, Reed DN, Sarah F, Trosko JE and Olson LK. (2004). Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential. Pancrease 29:e64-e76.
43.Chang CC, Tsai JL, Kuo KK, Wang KH, Chiang CH, Kao AP, Tai MH and Trosko JE. (2004). Expression of Oct-4, alpha fetoprotein and vimentin, and lack of gap-junctional intercellular communication as common phenotypes for human adult liver stem cells and hepatoma cells. Proc Am Assoc Cancer Res 45: 642.
44.Smith J, Ladi E, Mayer-Proschel M and Noble M. (2000). Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97:10032-7.
45.De Flora S, Izzotti A, D''Agostini F and Balansky RM. (2001). Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22:999-1013.
46.Hata R and Senoo H. (1989). L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissue like substance by skin fibroblasts. J Cell Physiol 138:8-16.
47.Chepda T, Cadau M, Girin P, Frey J and Chamson A. (2001). Monitoring of ascorbate at a constant rate in cell culture: effect on cell growth. In Vitro Cell Dev Biol Anim 37:26-30.
48.Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B and McKay R. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377-83.
49.El-Fouly MH, Trosko JE and Chang CC. (1987). Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168:422-0.
50.Trosko JE, Chang CC, Wilson MR, Upham B, Hayashi T and Wade M. (2000). Gap junctions and the regulation of cellular function of stem cells during development and differentiation. Methods 20:245-64.
51.Chang CC, Boezi JA, Warren ST, Sabourin CL, Liu PK, Glatzer L and Trosko JE. (1981). Isolation and characterization of a UV-sensitive hypermutable aphidicolin-resistant Chinese hamster cell line. Somatic Cell Genet 7:235-53.
52.Ezeh UI, Turek PJ, Reijo RA and Clark AT. (2005). Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104:2255-65.
53.Qu ZL, Zou SQ, Sun ZC, Wei GH, Wu XZ and Zhen SL. (2004). The expresseion and significance of human telomerase reverse transcriptase protein and gene in bile duct carcinomas and their adjacent tissue. Zhonghua Zhong Liu Za Zi 26:98-101.
54.Chang CC, Sun W, Cruz A, Saitoh M, Tai MH and Trosko JE. (2001). A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155:201-7.
55.Yamasaki H. (1990). Gap junctional intercellular communication and carcinogenesis. Carcinogenesis 11:1051-8.
56.Chang CC, Trosko JE, el-Fouly MH, Gibson-D''Ambrosio RE and D''Ambrosio SM. (1987). Contact insensitivity of a subpopulation of normal human fetal kidney epithelial cells and of human carcinoma cell lines. Cancer Res 47:1634-45.
57.Kao CY, Nomata K, Oakley CS, Welsch CW and Chang CC. (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty; phenotypic characterization and response to SV40 transfection. Carcinogenesis 16:531-8.
58.Matic M, Evans WH, Brink PR and Simon M. (2002). Epidermal stem cells do not communicate through gap junctions. J Invest Dermatol 118:110-6.
59.Grueterich M and Tseng SCG. (2002). Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch Ophthalmol 120:783-90.
60.Denker AE, Nicoll SB and Tuan RS. (1995). Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor bets-1. Differentiation 59:25-34.
61.Rangappa S, Fen C, Lee EH, Bongso A and Eugene SKW. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–9
62.Lee OK, Ko YC, Kuo TK, Chou SH, Li HJ, Chen WM, Chen TH and Su Y. (2004). Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells. J. Cell. Biochem 93: 917-28.
63.Akino K, Mineta T, Fukui M, Fujii T and Akita S. (2003). Bone morphogenetic protein-2 regulates proliferation of human mesenchymal stem cells. Wound Rep Reg 11:354-60.
64.Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW and Gimble JM. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54-63.
65.Wickham MQ, Erickson GR, Gimble JM, Vail TP and Guilak F. (2003). Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop 412:196-212.
66.Rheinwald JG and Green H. (1975). Serial cultivation of strains of human epidermal keratinocytes; the formation of keratinizing colonies from singe cells. Cell 6:331-43.
67.Yuspa SH and Morgan DL. (1981). Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature 293:72-4.
68.Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T and Kassem M. (2004). Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23:5095-8.
69.Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK and Habener JF. (2001). Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521-33.
70.Tang DG, Tokumoto YM, Apperly JA, Lloyd AC and Raff MC. (2001). Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868-71.
71.Tai MH, Chang CC, Kiupel M, Webster, Olson LK and Trosko JE. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26:495-502.
72.Trosko JE, Tai MH, Chang CC, Olson LK, Lin TM and Madhukar BV. (2004). Expression of Oct-4 and lack of gap-junctional intercellular communication as “hallmarks” for human adult stem cells and cancer cells. Proc Am Asso Cancer Res 45:643.

73.AEnsenat-Waser R, Vicente-Salar A, Cigudosa JC, Roche E, Soria B and Reiq JA. (2006). Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking.In vitro Cell Dev Biol Anim 42: 115-123.

74.Sell S. (2006). Potential gene therapy strategies for cancer stem cells. Curr Gene Ther 6: 579-591.

75.Redvers RP, Li A and Kaur P. (2006). Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Nati Acad Sci USA 103: 13168-13173.

76.Moseley TA, Zhu M and Hedrick MH. (2006). Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118:121S-128S.

77.Gimble JM, Zvonic S, Flyd ZE, Kassem M and Nuttall ME. (2006). Playing with bone and fat. Cell Biochem 15:251-66.

78.Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Sudkamp NP and Schmal H. (2006). Differential Expression Pattern of Extracellular Matrix Molecules During Chondrogenesis of Mesenchymal Stem Cells from Bone Marrow and Adipose Tissue. Tissue Eng 12: 2853-2862.

79.Hanahan D and Weinberg RA. (2000). The hallmarks of cancer. Cell 100:57-70.
80.Martin GS. (2003). Cell signaling and cancer. Cancer Cell 4: 167-74.
81.Klein S and McCormick F and evitzki A. (2005). Killing time for cancer cells. Nature Rev. Cancer 5:573-80.
82.Sachs K and Perez O, Pe''er D, Lauffenburger DA and Nolan GP. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523-9.
83.Lackner MR, Kindt RM, Carroll PM, Brown K, Cancilla MR, Chen C, deSilva H, Franke Y, Guan B, Heuer T, Hung T, Keegan K, Lee JM, Manne V, O’Brien C, Parry D, Perez-Villar JJ, Reddy RK, Xiao H, Zhan H, Cockett M, Plowman G Fitzgerald K, Costa M and Ross-Macdonald P. (2005). Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7:325-36.
84.Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ and Lydon NB. (2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther 295:139-145.
85.Weiss SW, Goldblum JR. Enzinger and Weiss. (2001). Soft tissue tumours. 4th ed. St. Louis (MO), Mosby, p. 641-93.
86.Kilpatrick SE, Doyon J, Choong PFM, et al. The clinicopathologic spectrum of myxoid and round cell liposarcoma: a study of 95 cases. Cancer 1996, 77, 1450-8.
87.Spillane AJ, Fisher C and Thomas JM. (1999). Myxoid liposarcoma-the frequency and the natural history of nonpulmonary soft tissue metastases. Ann Surg Oncol 6: 389-94.
88.Pearlstone DB, Pisters PW, Bold RJ, Feig BW, Hunt KK, Yasko AW, Patel S, Pollack A, Benjamin RS and Pollock RE. (1999). Patterns of recurrence in extremity liposarcoma: implications for staging and follow-up. Cancer 85:85-92.
89.Smith TA, Easley KA and Goldblum JR. (1996). Myxoid/round cell liposarcoma of the extremities. A clinicopathologic study of 29 cases with particular attention to extent of round cell liposarcoma. Am J Surg Pathol 20:171-80.
90.Knight JC, Renwick PJ, Clin PD, Van den Berghe H and Fletcher CD. (1995). Translocation t(12;16) (q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res 55:24-27.
91.Lucas DR, Nascimento AG, Sanjay BK and Rock MG. (1994). Well-differentiated liposarcoma: the Mayo clinic experience with 58 patients. Am J Clin Pathol 102:677-83.
92.Henricks WH, Chu YC, Goldblum JR and Weiss SW. (1997). Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol 21:271-81.
93.Rubin BP and Fletcher CDM. (1997). The cytogenetics of lipomatous tumours. Histopathology 30:507-11.
94.Downes KA, Goldblum JR, Montgomery EA and Fisher C. (2001). Pleomorphic liposarcoma: a clinicopathological analysis of 19 cases. Mod Pathol 14:179-84.
95.Patel SR, Burgess MA, Plager C and Papadopoulos NE, Linke KA and Benjamin RS. (1994). Myxoid liposarcoma –experience with chemotherapy. Cancer 74:1265-9.
96.Rohdewohld H, Weiher H, Reik W, Jaenisch R and Breindl M. (1987). Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J. Virol 61:336-43.
97.Wu X, Li Y, Crise B, and Burgess SM. (2003). Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749-51.
98.Varmus HE, Padgett T, Heasley S, Simon G and Bishop J M (1977). Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell 11: 307-19.
99.Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR and Bushman FD.(2004). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2: E234.
100.Neil JC and Forrest, D. (1987). Mechanisms of retrovirus-induced leukaemia: selected aspects. Biochim. Biophys. Acta 907:71-91.
101.Hayward WS, Neel BG and Astrin SM. (1981). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475-480.
102.Selten G, Cuypers HT, Zijlstra M, Melief C and Berns A. (1984). Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J 3:3215-22.
103.Kohn D B, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F, Tisdale J, Riviere I, Blau CA, Richard RE, Sorrentino B, Nolta J, Malech H, Brenner M, Cornetta K, Cavagnaro J, High K, Gloridoso J; American Society of Gene Therapy (ASGT) (2003). American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol. Ther 8:180-7.
104.Li Z, Dullmann J, Schiedimeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B and Baum C. (2002). Murine leukemia induced by retroviral gene marking. Science 296:497.
105.Baum C, von Kalle C Staal FJ, Li Z, Fehse B, Schmidt M, Weerkamp F, Karisson S, Wagemaker G and Williams DA. (2004). Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol. Ther 9:5-13.
106.Drews J. (2000). Drug discovery: a historical perspective. Science 287:1960-4.
107.Lindsay MA. (2003). Target discovery. Nature Rev. Drug Discov 2:831-8.
108.Williams M. (2003). Target validation. Curr. Opin. Pharmacol 3:571-7.
109.López-Otín C and Overall CM. (2002). Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol 3:509-19.
110.Coussens LM, Fingleton B and Matrisian LM. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387-92.
111.Fingleton B. (2003). Matrix metalloproteinase inhibitors for cancer therapy: the current situation and future prospects. Expert Opin. Ther. Targets 7:385-97.
112.Bergers G, Javaherian K, Lo KM, Folkman J and Hanahan D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808-12.
113.Boehm T, Folkman J, Browder T and O''Reilly MS. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404-7.
114.Fingleton B, Vargo-Gogola T, Crawford HC and Matrisian LM. (2001). Matrilysin (MMP-7) expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3:459-68.
115.Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD and Lopez-Otin C. (2003). Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet 35:252-7.
116.D. Sulitzeanu. (1985) Human cancer-associated antigens: present status and implications for immunodiagnosis, in: G. Klein (Ed.), Advances in Cancer Research, vol. 44, Academic Press, Inc., New York, pp.1-42.
117.Garrett CT and Sell S. (1995). Cellular Cancer Markers, Humana Press, Totowa, NJ.
118.Gretzer MB and Partin AW. (2003). PSA markers in prostate cancer detection. Urol. Clin. North Am 30:677-86.
119.Crawford NP Colliver DW and Galandiuk S. (2003). Tumor markers and colorectal cancer: utility in management. J. Surg. Oncol 84: 239-48.
120.Cheung KL and Robertson FR. (2003). Objective measurement of remission and progression in metastatic breast cancer by the use of serum tumour markers. Minerva Chir 58:297-303.
121.Trompetas V, Panagopoulos E, Priovolou-Papaevangelou M and Ramantanis G. Giant benign true cyst of the spleen with high serum level of CA 19-9. Eur. J. Gastroenterol. Hepatol 14: 85-8.
122.Anderiesz C and Quinn MS. (2003). Screening for ovarian cancer. Med. J. Aust 178:655-6.
123.Sell S. (1980). Cancer Markers. Humana Press, Clifton, NJ.
124.Krebs EG and Beavo JA. (1979). Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem 48:923-59.
125.Beebe SJ and Corbin JD. (1986). Cyclic nucleotide-dependent protein kinases, in: E.G. Krebs, P.D. Boyer (Eds.), The Enzymes: Control by Phosphorylation, vol. 17, Academic Press, Orlando and London, pp. 43-111(Part A).
126.Lohmann SM and Walter U. (1984). Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases, in: P. Greengard, G.A. Robinson (Eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research, vol. 18, Raven Press, New York, pp.63-117.
127.Cho YS, Park YG, Lee YN, Kim MK, Bates S, Tan L, Cho-Chung YS. (2000). Extracellular protein kinase A as a cancer biomarker: its expression by tumor cells and reversal by a myristate-lacking Calpha and RIIbeta subunit overexpression. Proc. Natl. Acad. Sci. U. S. A. 97:835-40.
128.Leor J, Patterson M, Quinones MJ, Kedes LH and Kloner RA. (1996). Transplantation of fetal myocardial tissue into the infarcted myocardium of rat: A potential method for repair of infarcted myocardium? Circulation 94 Suppl:II332-6.
129.Soonpaa MH, Koh GY, Klug MG and Field LJ. (1994). Formation of nascent intercalated discs between the grafted fetal cardiomyocytes and host myocardium. Science 264:98-101.
130.Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante Fand Jia ZO. (1997). Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96:II179-87.
131.Scorsin M, Hagege AA, Dolizy I, Marotte F, Mirochnik N, Copin H, Barnoux M, le Bert M, Samuel JL RappaportL and Menasche P. (1998). Can cellular transplantation improve function in doxorubicin-induced heart failure? Circulation 98(Suppl 19):II151-6.
132.Watanabe E, Smith DM Jr, Delcarpio JB, Sun J, Smart FW, Van Meter CH Jr. and Claycomb WS. (1998). Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplantation 7:239-46.
133.Reinecke H, Zhang M, Bartosek T and Murry CE. (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193-202
134.Koh GY, Klug MG, Soonpaa MH and Field LJ. (1993). Differentiation and long-time survival of C2C12 myoblast grafts in heart. J Clin Invest 92:1548-54.
135.Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD and Kraus WE. (1998). Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Med Nature 4:929-33.
136.Yoo KJ, Li RK, Weisel RD, Mickle DA, Li G and Yau TM. (2000). Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 70:859-65.
137.Hutcheson KA, Atkins BZ, Hueman MT, Hopkins MB, Glower DD and Taylor DA. (2000). Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant 9:359-68.
138.Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N and Chiu RC. (2000). Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120:999-1005.
139.Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ Sakai T and Jia ZQ. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(Suppl 19):II247-56.
140.Constantinides PG, Taylor SM and Jones PA. (1978). Phenotypic conversion of cultured mouse embryo cells by Aza pyrimidine nucleosides. Dev Biol 66:5771.
141.Constantinides PG, Jones PA and Gevers W. (1977). Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364-6.
142.Benedict WF, Banerjee A, Gardner A and Jones PA. (1977). Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A (T1) C1-3 cells by cancer chemotherapeutic agents. Cancer Res 37(7 Pt 1):2202-8.
143.Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano m, Takahashi T Hori S Abe H, Hata J, Umezawa A and Ogawa S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Clin Invest 103:697-705.
144.Taylor SM and Jones PA. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771-9.
145.Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo J-M, Pénicaud L and Casteilla, L. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223-9.
146.Pfeffer MA and Braunwald E. (1990). Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1161-72.
147.Orlic D, Hill JM and Arai AE. (2002). Stem cells for myocardial regeneration. Circ Res 91:1092-102.
148.Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella De Angelis MG, Gioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, Dejana E and Cossu G. (2001). Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98:10733-8.
149.Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK and Goodell MA. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395-402.
150.Grounds MD, White JD, Rosenthal N and Bogoyevitch MA. (2002). The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50:589-610.
151.Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A and Ogawa S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697-705.
152.Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A and Anversa P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410:701-5.
153.Gepstein L. (2002). Derivation and potential applications of human embryonic stem cells. Circ Res 91:866-76.
154.Rosen ED and Spiegelman BM. (2000). Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145-71.
155.Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H and Guilak F. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763-9.
156.Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM and Rice HE. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371-9.
157.Cousin B, André M, Arnaud E, Pénicaud L and Casteilla L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301:1016-22.
158.Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP and Caplan AI. (1991). In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195:492-503.
159.Nakahara H, Goldberg VM and Caplan AI. (1991). Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9:465-76.
160.Claycomb WC and Palazzo MC. (1980). Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol 80:466-82.
161.Sugaya K, Alvarez A, Marutle A, Kwak YD and Choumkina E. (2006). Stem cell strategies for Alzheimer''s disease therapy. Panminerva Med 48:87-96.
162.Miller RH. (2006). The promise of stem cells for neural repair. Brain Res 26:258-64.
163.Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S and Loughlin S.( 2000). In vivo induction ofmassive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 97:14686-91.
164.Nakatsuji Y and Miller RH. (2001). Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp. Neurol 168:290-9.
165.Alvarez-Buylla A, Garcia-Verdugo JM and Tramontin AD. (2001). A unified hypothesis on the lineage of neural stem cells. Nat. Rev., Neurosci 2:287-93.
166.Bambakidis NC and Miller RH. (2004). Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J 4:16-26.
167.Benraiss A, Chmielnicki E, Lerner K, Roh D and Goldman, SA. (2001). Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci 21:6718-31.
168.Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534-7.
169.Bottai D, Fiocco R, Gelain F, Defilippis L, Galli R, Gritti A and Vescovi LA. (2003). Neural stem cells in the adult nervous system. J. Hematother. Stem Cell Res 12:655-70.
170.Calza L, Giuliani A, Fernandez M, Pirondi S, D''Intino G, Aloe L and Giardino L.(2003). Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 100:7325-30.
171.Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci 16:2649-58.
172.Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S and Loughlin S. (2000). In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 97:14686-91.
173.Gage FH. (2000). Mammalian neural stem cells. Science 287:1433-8.
174.Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST and Ray J. (1995). Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. U. S. A. 92:11879-83.
175.Inoue M, Honmou O, Oka S, Houkin K, Hashi K, Kocsis JD. (2003). Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia 44:111-8.
176.Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR and Sanberg PR. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol 164:247-56.
177.Toda H, Takahashi J, Mizoguchi A, Koyano K and Hashimoto N. (2000). Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp. Neurol 165:66-76.
178.Tropepe V, Craig CG, Morshead CM and van der Kooy D. (1997). Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J. Neurosci 17:7850-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王邦雄:〈莊子系列(五):德充符〉,《鵝湖月刊》,1993年4月,第18卷,第10期,(第214號)。
2. 李正治:〈中國民間處世思想的探索與批判〉,《鵝湖月刊》,1986年9月,第12卷,第3期,(第135號)。
3. 李孝定:〈殷商甲骨文字在漢字發展史上的相對位置〉,《中央研究院歷史語言研究所集刊》,1993年12月,第六十四本,第四分。
4. 王健文:〈古代中國的天人關係及其中介角色〉,《大陸雜誌》,1992年6月,第84卷,第6期。
5. 王建:〈試論避諱在中國的起源〉,《大陸雜誌》,2002年6月,第104卷,第6期。
6. 李亦園:〈說占卜─一個民族學的考察〉,《中華文化復興月刊》,1978年6月,第11卷,第6期。
7. 吳建明:〈論莊子對「命」的思考及其「安命」之可能〉,《鵝湖月刊》,2001年5月,第26卷,第11期,(第311號)。
8. 杜勇:〈淺談周人的天命思想〉,《孔孟月刊》,1998年1月,第36卷,第5期。
9. 朱維煥:〈氣對於生命結構與活動所作詮釋之涵義(一)〉,《鵝湖月刊》,1986年9月,第12卷,第3期,(第135號)。
10. 石朝穎:〈以當代詮釋學角度來看儒道會通問題〉,《宗教哲學》,1995年1月,第1卷,第1期。
11. 李宗焜:〈商代的占卜活動〉,《歷史月刊》,1998年7月,第126期。
12. 李賢中:〈從墨家觀點看生死問題〉,《社區發展季刊》,2001年12月,第96期。
13. 李霜青:〈易經中的宇宙論〉,《孔孟月刊》,1977年7月,第15卷,第7期,(第175號)。
14. 沈順福:〈鄒衍的陰陽五行說的政治內涵〉,《中國文化月刊》,1995年6月,第188期。
15. 韋政通:〈中國哲學史上的四種不同人格〉,《現代學苑》,1971年5月,第8卷,第5期。