跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏志
研究生(外文):Po-Chih Chen
論文名稱:南台灣女性乳癌病人其人類白血球組織抗原-DQA1,-DQB1等位基因多型性分析之相關性研究
論文名稱(外文):HLA-DQA1 and -DQB1 alleles typing in southern Taiwanese women with breast cancer.
指導教授:陳百薰陳百薰引用關係
指導教授(外文):Bai-Hsiun Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:乳癌感受性基因保護性基因人類白血球抗原基因多型性聚合酶連鎖合成反應合併序列特異性引子
外文關鍵詞:Breast cancergenetic susceptibilityprotective alleleshuman leukocyte antigen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景與目的:
近年來死亡率增幅最大的是女性乳癌且呈現年輕化傾向,死於女性乳癌者平均年齡為56.86歲,較癌症平均死亡年齡再少約10歲。造成女性乳癌逐年上升原因,除了飲食西化之環境的因素外,遺傳性及家族性的因子也是主要造成乳癌的原因。很多相關的研究發現基因方面的因素也是造成乳癌發生原因之ㄧ。近年來越來越多人研究癌症與HLA之相關性,容易罹患此疾病之個體,在人類第六對染色體之主要組織相容性複合體(major histocompatibility complex, MHC)上有特異性的基因型存在。其中又以HLA第二級分子,DP、DQ及DR特別重要。本研究之目的是希望對高雄醫學大學附設中和紀念醫院經病理診斷為乳癌患者進行HLA-DQAl及DQBl之基因型分析,以期能得到是否有專屬於台灣地區乳癌患者之感受性基因及保護性基因。
材料與方法:
本研究共收集101位女性被診斷為乳癌患者(平均年齡為50.6±12.1歲,年齡範圍從23~80歲)及115位健康個體,分別作為本實驗之研究組及對照組,且研究之對象均為居住在南台灣的中國人。我們應用 Olerup等提出與過去此症相關研究不少採用之聚合酶連鎖合成反應合併序列特異性引子(PCR-SSP)分析的方法,對所收集的檢體進行HLA-DQAl及HLA-DQBl基因型分類並比較其頻率。對女性乳癌患者,吾人也比較乳癌罹患部位、estrogen 接受體、progesterone接受體、HER-2/neu存在與否在HLA-DQAl及DQBl出現頻率之差異是否具統計學上有意義之差異。
結果:
藉由PCR-SSP的方法,吾人研究顯示女性乳癌患者與正常人之間其DQAl及DQBl等位基因之頻率在二群之間均無有意義之差異。但是對乳癌患者HER-2/neu陽性者其DQA1*0501出現頻率24%有意義的高於HER-2/neu陰性者7.7%(Pc=0.04)。
結論:針對國人女性乳癌患者的研究結果中,顯示此疾病的感受性及保護性在DQAl及DQBl等位基因多形性不具有關聯性。乳癌患者中HER-2/neu陽性者其DQA1*0501頻率較HER-2/neu陰性者有意義的高,其HLA-DQAl與HER-2/neu之相關意義則仍待進一步研究。

關鍵詞:乳癌、感受性基因、保護性基因、人類白血球抗原、基因多型性、聚合酶連鎖合成反應合併序列特異性引子。
Abstract

Background and Aim: The pathogenesis of breast cancer is multifactorial. Genetic predisposition, environmental factors, hormones and even infections agent are thought to interact in the manifestation of breast cancer. Particular human leukocyte antigen (HLA) alleles play a pivotal role in cellular immunity and may be an important genetically determined host trait. Regardless of the importance and functions of HLA genes in the evolution of cancer, the allele specific association of HLA molecules in cancer patients has not been well established. Recently, there are a few studies concentrating on the association between HLA and breast cancer. Besides, the results of those studies were controversial.
Materials and Methods: We designed a study to evaluate the association between the genotype of HLA class II genes and the breast cancer, polymorphism of HLA-DQA1 and -DQB1 were determined by polymerase chain reaction with sequence specific primers (PCR-SSP) in 101 Taiwanese women patients with breast cancer and 115 matched control subjects. We also investigated the effect of breast cancer site estrogen receptor, progesterone receptor, HER-2/neu on the association between HLA-DQA1, DQB1 and female breast cancer.
Result: By PCR SSP typing, the HLA-DQA1 and -DQB1 locus comparison of allele frequencies between breast cancer patients and healthy controls showed no significant difference at the HLA-DQA1 and-DQB1 locus. In female breast cancer patients with HER-2/neu positivity, the frequencies of DQA1*0501 24% were significant higher then that of HER-2/neu negativity 7.7% (Pc=0.04)
Conclusion: We have established the importance to a lack of HLA-DQA1 and -DQB1 association with breast cancer in southern Taiwanese women, and we found that the HLA-DQA1*0501 allele frequencies of breast cancer patients with HER-2/neu positivity were significantly higher then that of HER-2/neu negativity (Pc=0.04). The results of this study may provide information for further clarification of the etiology of breast cancer in this region.

Key words: Breast cancer, genetic susceptibility, protective alleles, human leukocyte antigen.
中文摘要……………………………………………………………(4)
英文摘要……………………………………………………………(6)
第一章、序論………………………………………………………(8)
1.1 乳癌簡介……………………………………………….(8)
1.2 人類白血球組織抗原簡介……………………………(21)
1.3 乳癌與HLA-CLASS II…………………………………(31)

第二章 材料與方法……………………………………………(34)
2.1研究組及對照組…………………………………………(34)
2.2 進行純化週邊白血球之DNA萃取……………………(35)
2.3 HLA-DQ基因型分類……………………………………(36)
2.4 增幅HLA-DQA1所用之前引子…………………………(36)
2.5 增幅HLA-DQB1所用之前引子…………………………(37)
2.6 聚合酶合成反應對照引子………………………………(37)
2.7 聚合酶連鎖合成反應……………………………………(38)
2.8 瓊酯凝膠電泳……………………………………………(39)
2.9 統計分析…………………………………………………(40)

第三章 研究結果……………………………………………….(41)
第四章 結論……………………………………………………(44)
參考文獻…………………………………………………………(47)
圖表………………………………………………………………(57)
1.American Cancer Society. http://www.cancer.org, October 2, 2003. (Accessed at http://www.cancer.org.)
2.衛生統計資訊網. 2004. (Accessed at http://www.doh.gov.tw/statistic/index.htm.)
3.McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ (Clinical research ed 2000;321(7261):624-8.
4.Chen JJ, Silver D, Cantor S, et al. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res 1999;59(7 Suppl):1752s-6s.
5.Nathanson KL, Wooster R, Weber BL. Breast cancer genetics: what we know and what we need. Nat Med 2001;7(5):552-6.
6.Cortez D, Wang Y, Qin J, et al. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999;286(5442):1162-6.
7.Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10(9):1054-72.
8.Pharoah PD, Day NE, Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 1999;80(12):1968-73.
9.Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250(4985):1233-8.
10.Done SJ, Eskandarian S, Bull S, et al. p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. J Natl Cancer Inst 2001;93(9):700-4.
11.Phillips KA, Nichol K, Ozcelik H, et al. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J Natl Cancer Inst 1999;91(5):469-73.
12.Smith PD, Crossland S, Parker G, et al. Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 1999;18(15):2451-9.
13.de Cremoux P, Salomon AV, Liva S, et al. p53 mutation as a genetic trait of typical medullary breast carcinoma. J Natl Cancer Inst 1999;91(7):641-3.
14.Deligeoroglou E, Michailidis E, Creatsas G. Oral contraceptives and reproductive system cancer. Ann N Y Acad Sci 2003;997:199-208.
15.Kumle M, Alsaker E, Lund E. [Use of oral contraceptives and risk of cancer, a cohort study]. Tidsskr Nor Laegeforen 2003;123(12):1653-6.
16.Diamanti-Kandarakis E. Hormone replacement therapy and risk of malignancy. Curr Opin Obstet Gynecol 2004;16(1):73-8.
17.Dixon JM. Hormone replacement therapy and the breast. Surg Oncol 2003;12(4):251-63.
18.Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. J Clin Oncol 2002;20(4):1128-43.
19.Namer M, Lalanne C, Baulieu EE. Increase of progesterone receptor by tamoxifen as a hormonal challenge test in breast cancer. Cancer Res 1980;40(5):1750-2.
20.Margreiter R. [The antiestrogen tamoxifen in advanced breast cancer (author''s transl)]. Langenbecks Arch Chir 1980;351(4):249-62.
21.Williams RR, Horm JW. Association of cancer sites with tobacco and alcohol consumption and socioeconomic status of patients: interview study from the Third National Cancer Survey. J Natl Cancer Inst 1977;58(3):525-47.
22.Poschl G, Seitz HK. Alcohol and cancer. Alcohol Alcohol 2004;39(3):155-65.
23.Abu-Abid S, Szold A, Klausner J. Obesity and cancer. J Med 2002;33(1-4):73-86.
24.Key TJ, Allen NE, Spencer EA, et al. Nutrition and breast cancer. Breast 2003;12(6):412-6.
25.McTiernan A, Rajan KB, Tworoger SS, et al. Adiposity and sex hormones in postmenopausal breast cancer survivors. J Clin Oncol 2003;21(10):1961-6.
26.Coyle YM. The effect of environment on breast cancer risk. Breast Cancer Res Treat 2004;84(3):273-88.
27.Frazier AL, Li L, Cho E, et al. Adolescent diet and risk of breast cancer. Cancer Causes Control 2004;15(1):73-82.
28.Boyd NF, Stone J, Vogt KN, et al. Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer 2003;89(9):1672-85.
29.Nomenclature for factors of the HLA system, update September 1999. Marsh for the WHO Nomenclature Committee for Factors of the HLA System. Tissue Antigens 2000;55(1):100.
30.Burcelin R, Rodriguez-Gabin AG, Charron MJ, et al. Molecular analysis of the monomeric GTP-binding proteins of oligodendrocytes. Brain Res Mol Brain Res 1997;50(1-2):9-15.
31.Clayberger C, Parham P, Rothbard J, et al. HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes. Nature 1987;330(6150):763-5.
32.Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987;329(6139):512-8.
33.Jardetzky TS, Brown JH, Gorga JC, et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 1994;368(6473):711-8.
34.Zinkernagel RM, Doherty PC. The discovery of MHC restriction. Immunol Today 1997;18(1):14-7.
35.Watts C, Powis S. Pathways of antigen processing and presentation. Rev Immunogenet 1999;1(1):60-74.
36.Hall F, Bowness P. HLA and disease: From molecular function to disease association. HLA and MHC: Genes, Molecules and Function. In: Oxford: BIOS Scientific Publishers Limited:353-81.
37.Yasunaga S, Kimura A, Hamaguchi K, et al. Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM). Tissue Antigens 1996;47(1):37-48.
38.Ito H, Yamasaki K, Kawano Y, et al. HLA-DP-associated susceptibility to the optico-spinal form of multiple sclerosis in the Japanese. Tissue Antigens 1998;52(2):179-82.
39.Kira J, Kanai T, Nishimura Y, et al. Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders. Ann Neurol 1996;40(4):569-74.
40.Brown MA, Pile KD, Kennedy LG, et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann Rheum Dis 1996;55(4):268-70.
41.Trevisani VF, Mattos KT, Esteves RF, et al. Autoantibodies specificity in acute anterior uveitis according to the presence of the HLA-B27 allele. Ocul Immunol Inflamm 2001;9(4):231-42.
42.Beatty PG, Dahlberg S, Mickelson EM, et al. Probability of finding HLA-matched unrelated marrow donors. Transplantation 1988;45(4):714-8.
43.Takahashi K, Juji T, Miyazaki H. Determination of an appropriate size of unrelated donor pool to be registered for HLA-matched bone marrow transplantation. Transfusion 1989;29(4):311-6.
44.Shaw CK, Chang TK, Chen SN, et al. HLA polymorphism and probability of finding HLA-matched unrelated marrow donors for Chinese in Taiwan. Tissue Antigens 1997;50(6):610-9.
45.Yunis I, Salazar M, Yunis EJ. HLA-DR generic typing by AFLP. Tissue Antigens 1991;38(2):78-88.
46.Tonks S, Burne M, Moses JH, et al. HLA-class I DNA typing study. In: Genetic Diversity of HLA (Functional and Medical Implication). In: Edited by D. Charron. Published by Medical and Scientific International Publisher, 1997:199-215.
47.Kennedy LJ, Poulton KV, Ollier WE, et al. HLA-class I DNA typing using sequence specific oligonucleotide probes (SSOP) In: Genetic Diversity of HLA (Functional and Medical Implication). In: Charron D, ed.: Medical and Scientific International Publisher, 1995:216-25.
48.Tilanus MG, Eliaou J. HLA sequencing based typing: strategy and overview. In: Genetic Diversity of HLA (Functional and Medical Implication). In: Charron D, ed.: Medical and Scientific International Publisher, 1996:237-49.
49.Lorentzen DF, Iwanaga KK, Meuer KJ, et al. A 25% error rate in serologic typing of HLA-B homozygotes. Tissue Antigens 1997;50(4):359-65.
50.Mytilineos J, Christ U, Lempert M, et al. Comparison of typing results by serology and polymerase chain reaction with sequence-specific primers for HLA-Cw in 650 individuals. Tissue Antigens 1997;50(4):395-400.
51.Salih HR, Nussler V. Commentary: Immune escape versus tumor tolerance: how do tumors evade immune surveillance? Eur J Med Res 2001;6(8):323-32.
52.Hadden JW. The immunology and immunotherapy of breast cancer: an update. Int J Immunopharmacol 1999;21(2):79-101.
53.Rabinowich H, Cohen R, Bruderman I, et al. Functional analysis of mononuclear cells infiltrating into tumors: lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 1987;47(1):173-7.
54.Black MM, Speer FD, Opler SR. Structural representations of tumor-host relationships in mammary carcinoma; biologic and prognostic significance. Am J Clin Pathol 1956;26(3):250-65.
55.Shimokawara I, Imamura M, Yamanaka N, et al. Identification of lymphocyte subpopulations in human breast cancer tissue and its significance: an immunoperoxidase study with anti-human T- and B-cell sera. Cancer 1982;49(7):1456-64.
56.Aaltomaa S, Lipponen P, Eskelinen M, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 1992;28A(4-5):859-64.
57.Macchetti AH, Marana HR, Silva JS, et al. Tumor-infiltrating CD4+ T lymphocytes in early breast cancer reflect lymph node involvement. Clinics 2006;61(3):203-8.
58.Sette A, Buus S, Colon S, et al. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature 1987;328(6129):395-9.
59.Porto T, Coelho I, Boavida J, et al. Association of HLA DQ4-DR8 haplotype with papillary thyroid carcinomas. Clin Endocrinol (Oxf) 2006;64(2):179-83.
60.Lee JE, Lowy AM, Thompson WA, et al. Association of gastric adenocarcinoma with the HLA class II gene DQB10301. Gastroenterology 1996;111(2):426-32.
61.Wu MS, Hsieh RP, Huang SP, et al. Association of HLA-DQB1*0301 and HLA-DQB1*0602 with different subtypes of gastric cancer in Taiwan. Jpn J Cancer Res 2002;93(4):404-10.
62.Dao DD, Sierra-Torres CH, Robazetti SC, et al. HLA-DQB1 and cervical cancer in Venezuelan women. Gynecol Oncol 2005;96(2):349-54.
63.Planelles D, Nagore E, Moret A, et al. HLA class II polymorphisms in Spanish melanoma patients: homozygosity for HLA-DQA1 locus can be a potential melanoma risk factor. Br J Dermatol 2006;154(2):261-6.
64.Monos DS, Pappas J, Magira EE, et al. Identification of HLA-DQalpha and -DRbeta residues associated with susceptibility and protection to epithelial ovarian cancer. Hum Immunol 2005;66(5):554-62.
65.Kubler K, Arndt PF, Wardelmann E, et al. HLA-class II haplotype associations with ovarian cancer. Int J Cancer 2006;119(12):2980-5.
66.Chaudhuri S, Cariappa A, Tang M, et al. Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc Natl Acad Sci U S A 2000;97(21):11451-4.
67.Ghaderi A, Talei A, Gharesi-Fard B, et al. HLA-DBR 1 alleles and the susceptibility of Iranian patients with breast cancer. Pathol Oncol Res 2001;7(1):39-41.
68.Baccar Harrath A, Yacoubi Loueslati B, Troudi W, et al. HLA class II polymorphism: protective or risk factors to breast cancer in Tunisia? Pathol Oncol Res 2006;12(2):79-81.
69.Olerup O, Aldener A, Fogdell A. HLA-DQB1 and -DQA1 typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours. Tissue Antigens 1993;41(3):119-34.
70.Lema C, Fuessel-Haws AL, Lewis LR, et al. Association between HLA-DQB1 and cervical dysplasia in Vietnamese women. Int J Gynecol Cancer 2006;16(3):1269-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊