跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張美音
研究生(外文):Mei-Yin Chang
論文名稱:非小細胞肺癌之分子診斷標記暨診斷晶片研發
論文名稱(外文):Development of Molecular Markers and Diagnostic Gene Chip for Non-Small Cell Lung Cancer
指導教授:林綉茹
指導教授(外文):Shiu-Ru Lin
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:132
中文關鍵詞:非小細胞肺癌定量PCR基因陣列尼龍膜片
外文關鍵詞:Non-Small Cell Lung Cancerquantitative Real-Time PCRmembrane array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:799
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文總摘要
根據世界衛生組織的統計,肺癌是目前世界上最常見的腫瘤之一,並且為國人重要的癌症死亡原因。衛生署最近的研究調查顯示,在台灣平均每十萬人口中罹患肺癌的死亡率約為31人,其中女性與男性肺癌的發生率分別佔惡性腫瘤的第一位與第二位,儘管近年來診斷與手術治療方法不斷改進,此發生率卻持續地增加中。由於腫瘤本身的生物學特性,所以大部分的病患無法在腫瘤初期即被發現,除非腫瘤嚴重侵犯到鄰近器官引起續發狀況,否則並不易被發現。因此尋找一種有效且可信度高的腫瘤分子標記對於這些病患的臨床追蹤是迫切需要的,不但可以早期偵測肺癌,甚至可作為監控肺癌的分子診斷標記,更可以因此而降低台灣肺癌的死亡率。近年來隨著分子生物學的進步,對於癌症發生及轉移的分子機制相關基因的變化逐漸被闡明,因此臨床上利用各種致癌基因與抑癌基因,進行癌症患者的預後評估變得相當有意義。為了可以更準確的早期診斷肺癌,首先必須確認與肺癌癌化有關的基因,釐清相關之腫瘤抑制基因與致癌基因在肺癌形成過程中所扮演的角色,並藉由了解參與癌症形成之基因,進一步發展可進行癌症診斷或治療的分子技術。因此為了更深入了解台灣地區肺癌形成過程所參與變異之基因種類,吾人首先收集佔所有肺癌75%之非小細胞肺癌 (NSCLC) 患者之組織與血液,分析腫瘤抑制基因p53及致癌基因K-ras。分析p53基因發現61位NSCLC中有27位突變,共有34個位置圖變點,其突變率為44% (27/61) ,大多屬於框架轉移突變 (frameshift) 且多為新的突變熱點 (hot spot)。另外,K-ras致癌基因在76位非小細胞肺癌中有28位病人有突變,其突變率為36.8% (28/76),點突變 (point mutation) 位置主要集中在密碼12 (21/28; 75.0%) 與13 (5/28; 17.8%),突變也好發在有抽菸的非小細胞肺癌病患 (51.4% vs. 24.4%, p<0.05) 。由上述結果,吾人希望這些屬於國人特有的基因表現頻率與圖譜可進一步作為研發肺癌分子標記的基礎。延續第一個計畫,利用高效能 (high throughput) 之微矩陣列分析與生物資訊軟體 (Spotfire及GeneSpring) 之運用,找出腫瘤組織與正常組織中的差異性表現基因。嘗試分別由腺癌、鱗狀細胞癌與大細胞癌等,3對非小細胞肺癌腫瘤組織與相對的鄰近正常肺組織檢體進行微矩陣列分析,從中找出屬於台灣非小細胞肺癌特異性標的基因作為研發完整的癌症基因診斷與治療標的。從微矩陣列的實驗結果中得知有3625個基因具差異性表現情形,1720個基因為升調節 (up regulation;tissue/normal ratio ≥ 2);1905個基因為降調節 (down regulation;tissue/normal ratio ≤ 0.5) 。由生物資訊分析基因表現路徑發現,從1720個升調節基因中有95個基因參與Cytokine-cytokine receptor interaction、84個基因參與Focal adhesion與72個基因參與MAPK signaling pathway等三大路徑 (p≤0.05)。詳細探討此三大路徑內基因表現情形及其相互關係後得知,其中Focal adhesion為一調控細胞功能與腫瘤起始相關作用的核心路徑,且具有與其他路徑相互關聯的基因群。同時,吾人也將此部分研究中8個顯著的升調節基因(up regulation;tissue/normal ratio ≥ 20) 的8個非小細胞肺癌特異性基因,與4個由文獻探討後發現與肺癌致癌過程相關且具有診斷潛力的基因標的,整合此12個特異性較佳的基因共同作為肺癌輔助診斷的基因標的,進一步將測試這些基因標的在肺癌患者體內之表現情形。首先,選擇定量PCR (qRT-PCR) 這一種靈敏度相當高的技術為基礎,比較本實驗室於先前建立可以同時偵測多項基因表現的尼龍膜陣列技術平台,結果發現此兩種方法有相當一致的結果 (r=0.921)。再者,經由承受操作曲線特性 (ROC curve) 確認此12個有明顯升調節的基因群,可整合作為診斷肺癌之肺癌特異性的標的基因群,作為輔助肺癌診斷的基因標的。統合非小細胞肺癌病患臨床病理報告分析,結果發現hMTH1、SPD、HARP2、ITGA11、COL11A1與CK-19等六種訊息核醣核酸 (mRNA) 分子標記的表現與病理分期有關,其中hMTH1、SPD、ITGA11與COL11A1之訊息核醣核酸分子標記又與淋巴結轉移及預後有關。此外,這套成本低、操作容易且效能高的癌症診斷法,呈色型的癌症診斷晶片,以化學呈色的方式取代傳統微矩陣列分析的螢光呈色、以尼龍膜取代傳統的玻璃晶片,不但大幅降低儀器及試劑成本更突破多重技術門檻。並且整個基因陣列尼龍膜片的靈敏度 (sensitivity) 為89%及特異性 (specificity) 為84%顯示具有相當好之輔助診斷價值。同時吾人也清楚發現利用多個癌症分子標記的組合 (訊息核醣核酸、去氧核醣核酸 (DNA)) 用在非小細胞肺癌上,可顯著提高臨床患者的早期診出率及臨床診斷的正確性,更遠較於傳統所使用的腫瘤標記為佳。综合這些有意義的肺癌基因群,吾人深信這些分子標記,將有助於臨床醫師迅速並有效地早期診斷肺癌,以期能更早普及化的預防與早期治療,並提升肺癌病患的存活率與治癒率。
Abstract
Lung cancer in Taiwan has been the leading and second-leading cause of cancer deaths in women and men, respectively, since 1985. Although there have been tremendous improvements in diagnostic methods and surgical treatments, the incidence of lung cancer is still on the rise. Due to the biological characteristics of the tumor itself, most patients are unaware of the malignant tumor during the early-stage. However, a series of symptoms occur when the malignant tumor severely attacks neighboring organs. Therefore, the search for a highly effective and reliable tumor molecular marker for clinical applications, such as early lung cancer detection and cancer surveillance, is important and urgent due to the nature of the tumor. Furthermore, the impact of a tumor molecular marker may decrease the lung cancer mortality rate in Taiwan. Over the past few years, the development of molecular biology has gradually defined the changes in gene expression that are associated with carcinogensis and metastasis. These developments enable meaningful clinical use of the various oncogenes and tumor suppressor genes for the prognosis of cancer. In order to detect lung cancer early, the first step is to recognize the genes that are associated with carcinogenesis and clarify the oncogenes and tumor suppressor genes that participate in the tumorgenesis. We first collect of blood and tissue from patients with NSCLC, the most frequent type of lung cancer. Our research mainly focuses on a tumor suppressor gene, p53 and an oncogene, K-ras which are both highly relevant in the carcinogenesis of NSCLC. We investigate the mutations of the two genes in lung cancer tissues within Taiwanese lung cancer patients. Our results have shown that among 61 NSCLC patients that have p53 mutation, 34 mutations of the p53 gene were found in 27 cases with a mutation rate of 44% (27/61). Most mutations are frameshift mutations and are mostly new mutation hot spots. On the other hand, there are 28 patients out of 76 Taiwanese NSCLC patients with mutations in the K-ras oncogene, which corresponds to a mutation frequency of 36.8% (28/76). Most of the K-ras mutations are missense mutations at codon 12 (17/23; 73.9%) and 13 (5/23; 21.7%). The K-ras mutations were more frequently found in smokers than in non-smokers (51.4% vs. 24.4%, p<0.05). According to the above results, we expect that the mutation frequency and patterns of particular genes, specifically for Taiwanese citizens, can be used as the basis toward the development of biomarkers for lung cancer. Following the attempt to search for novel candidate genes specifically for Taiwanese citizens, we combined high-throughput technologies by utilizing microarray systems and bioinformatic software (Spotfire & GeneSpring) to identify the differential gene expression within tumor tissues. Initially, we used a microarray to analyze the differential expression of 3 NSCLC paired tissue samples, seeking for biomarkers specifically for NSCLC (in Taiwan) that can be used in the development of cancer diagnosis and target therapy. From the result of the microarray, we discovered 1720 up-regulated genes (tissue/normal ratio ≥ 2) and 1905 down-regulated genes (tissue/normal ratio ≤ 0.5). After analyzing the up-regulated genes from the microarray data, we discovered that the expressed genes mostly participated in three pathways: Cytokine-cytokine receptor interaction, Focal adhesion and MAPK signaling pathway. Each pathway contains 95, 84, and 72 genes, respectively. After investigating the activations and the interactions of the genes within these three pathways, the Focal adhesion pathway was found to be the main pathway which regulates the function of the cell and the carcinogenesis of cancer. It also has a group of genes that interact with each other. As for developing specific biomarkers for lung cancer diagnosis, we combined 8 significantly up-regulated genes (tissue/normal ratio ≥ 20) expressed in NSCLC and 4 genes which can possibly be the most promising diagnosis markers and have already been identified to participate in the carcinogenesis of lung cancer. Primarily, this study compares the quantified PCR with the membrane array, a technique which can detect multiple gene expressions at the same time, to elucidate any correlation between the two methods. The result indicated that these two methods were highly correlated (r=0.921). Next, by the ROC curve analysis, this study confirmed that the 12 significantly up-regulated genes can be used as specific mRNA markers for the future diagnosis of lung cancer. Upon the clinicopathological data of the patients being further analyzed with the 12 biomarkers, we discovered the expression of 6 mRNA markers-hMTH1, SPD, HARP2, ITGA11, COL11A1 and CK-19. These markers were associated with clinicopathological stages while the hMTH1, SPD, ITGA11 and COL11A1 makers were associated with the prognosis and lymphatic metastasis. In addition, the cancer diagnostic chip-membrane array, which was established in our lab, has the advantage of low cost, easy operation and high efficiency. Under such conditions, the sensitivity and specificity of the mRNA markers panel for NSCLC were 89% and 84%, respectively. Compared to traditionally-used tumor markers, this research clearly indicates that the combination of multiple gene markers for the diagnosis of NSCLC may significantly increase the accuracy and the efficacy for early detection of lung cancer. With the practice of lung cancer-specific mRNA markers, we believe this could be helpful for physicians to detect lung cancer more quickly and effectively. Earlier detection will lead to faster treatment and improve the prognosis and survival rate of lung cancer patients.
目 錄

中文總摘要 4
Abstract 8
圖與表目錄 12
第一章 研究背景與文獻回顧 14
一、肺癌為惡性腫瘤死亡原因之第一位 15
二、肺癌的病理組織型態分類與臨床診斷16
三、肺癌可能發生的原因 17
四、基因體學及其生物技術之應用 19
五、肺癌早期診斷之理論 20
六、研究概述 21
縮寫表 23
第二章 p53基因在人類非小細胞肺癌突變情形分析 25
前言 26
材料與方法 29
結果 36
討論 38
流程圖 (一) 41


第三章 K-ras基因在人類非小細胞肺癌突變情形分析 51
前言 52
材料與方法 54
結果 56
討論 57
第四章 非小細胞肺癌本土性差異表現基因之分析 63
前言 64
材料與方法 66
結果 68
討論 69
流程圖 (二) 71
第五章 非小細胞肺癌在生物反應路徑中明顯表現的基因 77
前言 78
材料與方法 79
結果 80
討論 82
流程圖 (三) 84


第六章 非小細胞肺癌基因診斷晶片之評估 89
前言 90
材料與方法 93
結果 96
討論 99
流程圖 (四) 103
第七章 總結論 112
第八章 參考文獻 116
附件 已刊登之論文 132
Reference

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511.
Aviel-Ronen, S., Blackhall, F.H., Shepherd, F.A., and Tsao, M.S. (2006). K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer 8, 30-38.
Barbacid, M. (1987). ras genes. Annu Rev Biochem 56, 779-827.
Beckett, W.S. (1993). Epidemiology and etiology of lung cancer. Clin Chest Med 14, 1-15.
Bos, J.L., Fearon, E.R., Hamilton, S.R., Verlaan-de Vries, M., van Boom, J.H., van der Eb, A.J., and Vogelstein, B. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293-297.
Bos, J.L., Toksoz, D., Marshall, C.J., Verlaan-de Vries, M., Veeneman, G.H., van der Eb, A.J., van Boom, J.H., Janssen, J.W., and Steenvoorden, A.C. (1985). Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315, 726-730.
Bret, P., Jouvet, A., Madarassy, G., Guyotat, J., and Trouillas, J. (2001). Visceral cancer metastasis to pituitary adenoma: report of two cases. Surg Neurol 55, 284-290.
Caduff, R.F., Svoboda-Newman, S.M., Ferguson, A.W., Johnston, C.M., and Frank, T.S. (1999). Comparison of mutations of Ki-RAS and p53 immunoreactivity in borderline and malignant epithelial ovarian tumors. Am J Surg Pathol 23, 323-328.
Cales, C., Hancock, J.F., Marshall, C.J., and Hall, A. (1988). The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332, 548-551.
Casey, G., Lopez, M.E., Ramos, J.C., Plummer, S.J., Arboleda, M.J., Shaughnessy, M., Karlan, B., and Slamon, D.J. (1996). DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene 13, 1971-1981.
Chen, F.M., Hou, M.F., Wang, J.Y., Chen, T.C., Chen, D.C., Huang, S.Y., Chung, Y.S., and Lin, S.R. (2004). High frequency of G/C transversion on p53 gene alterations in breast cancers from Taiwan. Cancer Lett 207, 59-67.
Chen, H.Y., Yu, S.L., Chen, C.H., Chang, G.C., Chen, C.Y., Yuan, A., Cheng, C.L., Wang, C.H., Terng, H.J., Kao, S.F., et al. (2007). A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356, 11-20.
Chen, R., Wei, L., and Chen, R.L. (1995). Lung cancer mortality update and prevalence of smoking among copper miners and smelters. Scand J Work Environ Health 21, 513-516.
Chen, Y.F., Wang, J.Y., Wu, C.H., Chen, F.M., Cheng, T.L., and Lin, S.R. (2005). Detection of circulating cancer cells with K-ras oncogene using membrane array. Cancer Lett 229, 115-122.
Chiba, I., Takahashi, T., Nau, M.M., D''Amico, D., Curiel, D.T., Mitsudomi, T., Buchhagen, D.L., Carbone, D., Piantadosi, S., Koga, H., et al. (1990). Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene 5, 1603-1610.
Chien, C.C., Chen, S.H., Liu, C.C., Lee, C.L., Yang, R.N., Yang, S.H., and Huang, C.J. (2007). Correlation of K-ras codon 12 mutations in human feces and ages of patients with colorectal cancer (CRC). Transl Res 149, 96-102.
Cline, M.J., and Battifora, H. (1987). Abnormalities of protooncogenes in non-small cell lung cancer. Correlations with tumor type and clinical characteristics. Cancer 60, 2669-2674.
Conti, C.J. (1992). Mutations of genes of the ras family in human and experimental tumors. Prog Clin Biol Res 376, 357-378.
Crouch, E.C. (2000). Surfactant protein-D and pulmonary host defense. Respir Res 1, 93-108.
Dalager, N.A., Pickle, L.W., Mason, T.J., Correa, P., Fontham, E., Stemhagen, A., Buffler, P.A., Ziegler, R.G., and Fraumeni, J.F., Jr. (1986). The relation of passive smoking to lung cancer. Cancer Res 46, 4808-4811.
de Anta, J.M., Jassem, E., Rosell, R., Martinez-Roca, M., Jassem, J., Martinez-Lopez, E., Monzo, M., Sanchez-Hernandez, J.J., Moreno, I., and Sanchez-Cespedes, M. (1997). TP53 mutational pattern in Spanish and Polish non-small cell lung cancer patients: null mutations are associated with poor prognosis. Oncogene 15, 2951-2958.
de Kok, J.B., van Solinge, W.W., Ruers, T.J., Roelofs, R.W., van Muijen, G.N., Willems, J.L., and Swinkels, D.W. (1997). Detection of tumour DNA in serum of colorectal cancer patients. Scand J Clin Lab Invest 57, 601-604.
DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., and Trent, J.M. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14, 457-460.
Dobbin, K.K., Beer, D.G., Meyerson, M., Yeatman, T.J., Gerald, W.L., Jacobson, J.W., Conley, B., Buetow, K.H., Heiskanen, M., Simon, R.M., et al. (2005). Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin Cancer Res 11, 565-572.
Dumont, N. (1999). Genetic and epigenetic contributions to colorectal cancer. Apmis 107, 711-722.
Espinosa, E., Vara, J.A., Redondo, A., Sanchez, J.J., Hardisson, D., Zamora, P., Pastrana, F.G., Cejas, P., Martinez, B., Suarez, A., et al. (2005). Breast cancer prognosis determined by gene expression profiling: a quantitative reverse transcriptase polymerase chain reaction study. J Clin Oncol 23, 7278-7285.
Fasano, O., Aldrich, T., Tamanoi, F., Taparowsky, E., Furth, M., and Wigler, M. (1984). Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci U S A 81, 4008-4012.
Fidler, I.J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50, 6130-6138.
Finkelstein, S.D., Sayegh, R., Bakker, A., and Swalsky, P. (1993a). Determination of tumor aggressiveness in colorectal cancer by K-ras-2 analysis. Arch Surg 128, 526-531; discussion 531-522.
Finkelstein, S.D., Sayegh, R., Christensen, S., and Swalsky, P.A. (1993b). Genotypic classification of colorectal adenocarcinoma. Biologic behavior correlates with K-ras-2 mutation type. Cancer 71, 3827-3838.
Forrester, K., Almoguera, C., Han, K., Grizzle, W.E., and Perucho, M. (1987). Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327, 298-303.
Gao, H.G., Chen, J.K., Stewart, J., Song, B., Rayappa, C., Whong, W.Z., and Ong, T. (1997). Distribution of p53 and K-ras mutations in human lung cancer tissues. Carcinogenesis 18, 473-478.
Gao, W.M., Mady, H.H., Yu, G.Y., Siegfried, J.M., Luketich, J.D., Melhem, M.F., and Keohavong, P. (2003). Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types. Lung Cancer 40, 141-150.
Gao, Y.T. (1996). Risk factors for lung cancer among nonsmokers with emphasis on lifestyle factors. Lung Cancer 14 Suppl 1, S39-45.
Ger, L.P., Hsu, W.L., Chen, K.T., and Chen, C.J. (1993). Risk factors of lung cancer by histological category in Taiwan. Anticancer Res 13, 1491-1500.
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537.
Grant, G.M., Fortney, A., Gorreta, F., Estep, M., Del Giacco, L., Van Meter, A., Christensen, A., Appalla, L., Naouar, C., Jamison, C., et al. (2004). Microarrays in cancer research. Anticancer Res 24, 441-448.
Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855-4878.
Guerrero, S., Casanova, I., Farre, L., Mazo, A., Capella, G., and Mangues, R. (2000). K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 60, 6750-6756.
Harris, C.C. (1996). p53 tumor suppressor gene: from the basic research laboratory to the clinic--an abridged historical perspective. Carcinogenesis 17, 1187-1198.
Health, D.o. (2006). Health Statistics (Taiwan).
Hofmann, H.S., Hansen, G., Burdach, S., Bartling, B., Silber, R.E., and Simm, A. (2004). Discrimination of human lung neoplasm from normal lung by two target genes. Am J Respir Crit Care Med 170, 516-519.
Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991). p53 mutations in human cancers. Science 253, 49-53.
Hussain, S.P., Hofseth, L.J., and Harris, C.C. (2001). Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34 Suppl 2, S7-15.
Ishikawa, J., Maeda, S., Kamidono, S., and Sugiyama, T. (1988). Restriction fragment length polymorphism and activation of c-Ha-ras gene in urothelial cancer. Anticancer Res 8, 915-924.
Isola, J., Visakorpi, T., Holli, K., and Kallioniemi, O.P. (1992). Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. J Natl Cancer Inst 84, 1109-1114.
Iwao, K., Watanabe, T., Fujiwara, Y., Takami, K., Kodama, K., Higashiyama, M., Yokouchi, H., Ozaki, K., Monden, M., and Tanigami, A. (2001). Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer. Int J Cancer 91, 433-437.
Jassem, E., Niklinski, J., Rosell, R., Niklinska, W., Jakobkiewicz, J., Monzo, M., Chyczewski, L., Kobierska, G., Skokowski, J., Zylicz, M., et al. (2001). Types and localisation of p53 gene mutations: a report on 332 non-small cell lung cancer patients. Lung Cancer 34 Suppl 2, S47-51.
Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M.J. (2006). Cancer statistics, 2006. CA Cancer J Clin 56, 106-130.
Johnson, B.E., Ihde, D.C., Makuch, R.W., Gazdar, A.F., Carney, D.N., Oie, H., Russell, E., Nau, M.M., and Minna, J.D. (1987). myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 79, 1629-1634.
Koo, L.C., and Ho, J.H. (1990). Worldwide epidemiological patterns of lung cancer in nonsmokers. Int J Epidemiol 19 Suppl 1, S14-23.
Kountouras, J., Boura, P., and Lygidakis, N.J. (2000). New concepts of molecular biology for colon carcinogenesis. Hepatogastroenterology 47, 1291-1297.
Lee, L.N., Shew, J.Y., Sheu, J.C., Lee, Y.C., Lee, W.C., Fang, M.T., Chang, H.F., Yu, C.J., Yang, P.C., and Luh, K.T. (1994). Exon 8 mutation of p53 gene associated with nodal metastasis in non-small-cell lung cancer. Am J Respir Crit Care Med 150, 1667-1671.
Lemoine, N.R., Mayall, E.S., Wyllie, F.S., Williams, E.D., Goyns, M., Stringer, B., and Wynford-Thomas, D. (1989). High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4, 159-164.
Levine, A.J., Momand, J., and Finlay, C.A. (1991). The p53 tumour suppressor gene. Nature 351, 453-456.
Li, R., Wang, H., Bekele, B.N., Yin, Z., Caraway, N.P., Katz, R.L., Stass, S.A., and Jiang, F. (2006). Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25, 2628-2635.
Li, S., Pan, D., and Wang, G. (1994). Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. Arch Environ Health 49, 119-122.
Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971.
Lin, J.C., Wang, W.Y., Chen, K.Y., Wei, Y.H., Liang, W.M., Jan, J.S., and Jiang, R.S. (2004). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350, 2461-2470.
Lin, S.R., Hsu, C.H., Tsai, J.H., Wang, J.Y., Hsieh, T.J., and Wu, C.H. (2000). Decreased GTPase activity of K-ras mutants deriving from human functional adrenocortical tumours. Br J Cancer 82, 1035-1040.
Lin, S.R., Tsai, J.H., Yang, Y.C., and Lee, S.C. (1998). Mutations of K-ras oncogene in human adrenal tumours in Taiwan. Br J Cancer 77, 1060-1065.
Liu, F., Jiang, B., Gong, S.J., Yao, B.D., Zhang, W.Y., Zhu, G.S., Zhu, Z.Z., Gong, Y.F., Wang, M.L., and Hu, X.H. (2007). [Mutational analysis of EGFR and K-RAS in Chinese patients with non-small cell lung cancer]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24, 31-34.
Lu, C., Soria, J.C., Tang, X., Xu, X.C., Wang, L., Mao, L., Lotan, R., Kemp, B., Bekele, B.N., Feng, L., et al. (2004). Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. J Clin Oncol 22, 4575-4583.
Lung, M.L., Wong, M.P., Skaanild, M.T., Fok, C.L., Lam, W.K., and Yew, W.W. (1996). p53 mutations in non-small cell lung carcinomas in Hong Kong. Chest 109, 718-726.
Markl Isable, D., Salem, CE., Joens, PA (2000). Molecular biology of bladder cancer.
Michiels, S., Koscielny, S., and Hill, C. (2005). Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365, 488-492.
Mocellin, S., Provenzano, M., Rossi, C.R., Pilati, P., Nitti, D., and Lise, M. (2003). Use of quantitative real-time PCR to determine immune cell density and cytokine gene profile in the tumor microenvironment. J Immunol Methods 280, 1-11.
Moch, H., Sauter, G., Gasser, T.C., Buchholz, N., Bubendorf, L., Richter, J., Jiang, F., Dellas, A., and Mihatsch, M.J. (1997). p53 protein expression but not mdm-2 protein expression is associated with rapid tumor cell proliferation and prognosis in renal cell carcinoma. Urol Res 25 Suppl 1, S25-30.
Moley, J.F., Brother, M.B., Wells, S.A., Spengler, B.A., Biedler, J.L., and Brodeur, G.M. (1991). Low frequency of ras gene mutations in neuroblastomas, pheochromocytomas, and medullary thyroid cancers. Cancer Res 51, 1596-1599.
Mukohara, T., Kudoh, S., Yamauchi, S., Kimura, T., Yoshimura, N., Kanazawa, H., Hirata, K., Wanibuchi, H., Fukushima, S., Inoue, K., et al. (2003). Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer 41, 123-130.
Mulcahy, H.E., Lyautey, J., Lederrey, C., qi Chen, X., Anker, P., Alstead, E.M., Ballinger, A., Farthing, M.J., and Stroun, M. (1998). A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res 4, 271-275.
Murakami, T., Cardones, A.R., and Hwang, S.T. (2004). Chemokine receptors and melanoma metastasis. J Dermatol Sci 36, 71-78.
Nacht, M., Dracheva, T., Gao, Y., Fujii, T., Chen, Y., Player, A., Akmaev, V., Cook, B., Dufault, M., Zhang, M., et al. (2001). Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci U S A 98, 15203-15208.
Nakagawa, T., Saitoh, S., Imoto, S., Itoh, M., Tsutsumi, M., Hikiji, K., Nakamura, H., Matozaki, S., Ogawa, R., Nakao, Y., et al. (1992). Multiple point mutation of N-ras and K-ras oncogenes in myelodysplastic syndrome and acute myelogenous leukemia. Oncology 49, 114-122.
Neri, M., Cesario, A., Granone, P., Dominioni, L., Puntoni, R., D''Angelillo, R.M., and Russo, P. (2006). Prognostic role of K-Ras mutations in non-small cell lung cancer: still an issue for open debate. Lung Cancer 53, 393-395; author reply 397-398.
Nishida, S., Kitamura, K., Ichikawa, D., Koike, H., Tani, N., and Yamagishi, H. (2000). Molecular detection of disseminated cancer cells in the peripheral blood of patients with gastric cancer. Anticancer Res 20, 2155-2159.
Oksa, P., Pukkala, E., Karjalainen, A., Ojajarvi, A., and Huuskonen, M.S. (1997). Cancer incidence and mortality among Finnish asbestos sprayers and in asbestosis and silicosis patients. Am J Ind Med 31, 693-698.
Park, K.S., Kim, N.G., Kim, J.J., Kim, H., Ahn, Y.H., and Choi, K.Y. (1999). Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 81, 1116-1121.
Pennisi, E. (1997). A catalog of cancer genes at the click of a mouse. Science 276, 1023-1024.
Perng, D.W., Perng, R.P., Kuo, B.I., and Chiang, S.C. (1996). The variation of cell type distribution in lung cancer: a study of 10,910 cases at a medical center in Taiwan between 1970 and 1993. Jpn J Clin Oncol 26, 229-233.
Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature 406, 747-752.
Portera, C.A., Jr., Berman, R.S., and Ellis, L.M. (1998). Molecular determinants of colon cancer metastasis. Surg Oncol 7, 183-195.
Rodenhuis, S., Boerrigter, L., Top, B., Slebos, R.J., Mooi, W.J., van''t Veer, L., and van Zandwijk, N. (1997). Mutational activation of the K-ras oncogene and the effect of chemotherapy in advanced adenocarcinoma of the lung: a prospective study. J Clin Oncol 15, 285-291.
Ruud, P., Fodstad, O., and Hovig, E. (1999). Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 80, 119-125.
Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470.
Shapiro, B., Chakrabarty, M., Cohn, E.M., and Leon, S.A. (1983). Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51, 2116-2120.
Sher, Y.P., Shih, J.Y., Yang, P.C., Roffler, S.R., Chu, Y.W., Wu, C.W., Yu, C.L., and Peck, K. (2005). Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin Cancer Res 11, 173-179.
Shibata, T., Uryu, S., Kokubu, A., Hosoda, F., Ohki, M., Sakiyama, T., Matsuno, Y., Tsuchiya, R., Kanai, Y., Kondo, T., et al. (2005). Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis: its association with clinicopathologic features. Clin Cancer Res 11, 6177-6185.
Shields, P.G., Xu, G.X., Blot, W.J., Fraumeni, J.F., Jr., Trivers, G.E., Pellizzari, E.D., Qu, Y.H., Gao, Y.T., and Harris, C.C. (1995). Mutagens from heated Chinese and U.S. cooking oils. J Natl Cancer Inst 87, 836-841.
Shim, C., Zhang, W., Rhee, C.H., and Lee, J.H. (1998). Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res 4, 3045-3050.
Shin, J.H., Chung, J., Kim, H.O., Kim, Y.H., Hur, Y.M., Rhim, J.H., Chung, H.K., Park, S.C., Park, J.G., and Yang, H.K. (2002). Detection of cancer cells in peripheral blood of stomach cancer patients using RT-PCR amplification of tumour-specific mRNAs. Aliment Pharmacol Ther 16 Suppl 2, 137-144.
Siegfried, J.M., Gillespie, A.T., Mera, R., Casey, T.J., Keohavong, P., Testa, J.R., and Hunt, J.D. (1997). Prognostic value of specific KRAS mutations in lung adenocarcinomas. Cancer Epidemiol Biomarkers Prev 6, 841-847.
Sloan, S.R., Newcomb, E.W., and Pellicer, A. (1990). Neutron radiation can activate K-ras via a point mutation in codon 146 and induces a different spectrum of ras mutations than does gamma radiation. Molecular and cellular biology 10, 405-408.
Sorensen, G.L., Hjelmborg, J.V., Leth-Larsen, R., Schmidt, V., Fenger, M., Poulain, F., Hawgood, S., Sorensen, T.I., Kyvik, K.O., and Holmskov, U. (2006). Surfactant protein D of the innate immune defence is inversely associated with human obesity and SP-D deficiency infers increased body weight in mice. Scand J Immunol 64, 633-638.
Sorlie, T., Martel-Planche, G., Hainaut, P., Lewalter, J., Holm, R., Borresen-Dale, A.L., and Montesano, R. (1998). Analysis of p53, p16MTS, p21WAF1 and H-ras in archived bladder tumours from workers exposed to aromatic amines. Br J Cancer 77, 1573-1579.
Soussi, T., Dehouche, K., and Beroud, C. (2000). p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat 15, 105-113.
Sozzi, G., Miozzo, M., Donghi, R., Pilotti, S., Cariani, C.T., Pastorino, U., Della Porta, G., and Pierotti, M.A. (1992). Deletions of 17p and p53 mutations in preneoplastic lesions of the lung. Cancer Res 52, 6079-6082.
Starzynska, T., Bromley, M., Ghosh, A., and Stern, P.L. (1992). Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. Br J Cancer 66, 558-562.
Stroun, M., Anker, P., Lyautey, J., Lederrey, C., and Maurice, P.A. (1987). Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 23, 707-712.
Stroun, M., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., and Beljanski, M. (1989). Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46, 318-322.
Sunaga, N., Miyajima, K., Suzuki, M., Sato, M., White, M.A., Ramirez, R.D., Shay, J.W., Gazdar, A.F., and Minna, J.D. (2004). Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 64, 4277-4285.
Sundaresan, V., Ganly, P., Hasleton, P., Rudd, R., Sinha, G., Bleehen, N.M., and Rabbitts, P. (1992). p53 and chromosome 3 abnormalities, characteristic of malignant lung tumours, are detectable in preinvasive lesions of the bronchus. Oncogene 7, 1989-1997.
Suzuki, H., Takahashi, T., Kuroishi, T., Suyama, M., Ariyoshi, Y., Takahashi, T., and Ueda, R. (1992). p53 mutations in non-small cell lung cancer in Japan: association between mutations and smoking. Cancer Res 52, 734-736.
Takeshima, Y., Inai, K., Bennett, W.P., Metcalf, R.A., Welsh, J.A., Yonehara, S., Hayashi, Y., Fujihara, M., Yamakido, M., Akiyama, M., et al. (1994). p53 mutations in lung cancers from Japanese mustard gas workers. Carcinogenesis 15, 2075-2079.
Vahakangas, K.H., Samet, J.M., Metcalf, R.A., Welsh, J.A., Bennett, W.P., Lane, D.P., and Harris, C.C. (1992). Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 339, 576-580.
Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995). Serial analysis of gene expression. Science 270, 484-487.
Wang, J.Y., Hsieh, J.S., Chen, F.M., Yeh, C.S., Alexandersen, K., Huang, T.J., Chen, D., and Lin, S.R. (2003). High frequency of activated K-ras codon 15 mutant in colorectal carcinomas from Taiwanese patients. Int J Cancer 107, 387-393.
Wang, Y.C., Chen, C.Y., Chen, S.K., Cherng, S.H., Ho, W.L., and Lee, H. (1998). High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan. Cancer Res 58, 328-333.
Ward, R.L., Todd, A.V., Santiago, F., O''Connor, T., and Hawkins, N.J. (1997). Activation of the K-ras oncogene in colorectal neoplasms is associated with decreased apoptosis. Cancer 79, 1106-1113.
Weeraratna, A.T. (2005). Discovering causes and cures for cancer from gene expression analysis. Ageing Res Rev 4, 548-563.
Wen, C.P., Tsai, S.P., and Yen, D.D. (1994). The health impact of cigarette smoking in Taiwan. Asia Pac J Public Health 7, 206-213.
Weynants, P., Humblet, Y., Bosly, A., Schallier, D., Duprez, P., Majois, F., Beauduin, M., Prignot, J., and Symann, M. (1990). Carboplatin in combination with etoposide in inoperable non-small-cell lung cancer (NSCLC). Med Oncol Tumor Pharmacother 7, 219-222.
Wong, I.H., Yeo, W., Chan, A.T., and Johnson, P.J. (2001a). Quantitative correlation of cytokeratin 19 mRNA level in peripheral blood with disease stage and metastasis in breast cancer patients: potential prognostic implications. Int J Oncol 18, 633-638.
Wong, I.H., Yeo, W., Chan, A.T., and Johnson, P.J. (2001b). Quantitative relationship of the circulating tumor burden assessed by reverse transcription-polymerase chain reaction for cytokeratin 19 mRNA in peripheral blood of colorectal cancer patients with Dukes'' stage, serum carcinoembryonic antigen level and tumor progression. Cancer Lett 162, 65-73.
Yamaguchi, K., Takagi, Y., Aoki, S., Futamura, M., and Saji, S. (2000). Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg 232, 58-65.
Yang, S.P., Luh, K.T., Kuo, S.H., and Lin, C.C. (1984). Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration--a 30-year consecutive study. Jpn J Clin Oncol 14, 7-19.
Yu, S.Z., and Zhao, N. (1996). Combined analysis of case-control studies of smoking and lung cancer in China. Lung Cancer 14 Suppl 1, S161-170.
Zhang, L., Cilley, R.E., and Chinoy, M.R. (2000). Suppression subtractive hybridization to identify gene expressions in variant and classic small cell lung cancer cell lines. J Surg Res 93, 108-119.
Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R.H., Hamilton, S.R., Vogelstein, B., and Kinzler, K.W. (1997). Gene expression profiles in normal and cancer cells. Science 276, 1268-1272.
葉昌偉, and 謝昌煥. 基因晶片簡介與分析及應用軟體介紹(上).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top