跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何嘉碩
研究生(外文):Jia-Suo Ho
論文名稱:建構小鼠融合蛋白Fibritin-CD23並研究其抑制肥大細胞釋放發炎性媒介物的效果
論文名稱(外文):Fibritin-CD23 Is Constructed as A Mouse Fusion Protein to Confirm Its Inhibition Effects of Mast Cells Releasing Their Mediators
指導教授:陳炳宏陳炳宏引用關係
指導教授(外文):Bing-Hung Chen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:免疫球蛋白E第二型受器致發炎性媒介物質小鼠融合蛋白
外文關鍵詞:CD23fibritinmediator release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CD23是免疫球蛋白E的第二型受器(FcεRII),它被證明在調控IgE所媒介的疾病上扮演著關鍵的角色。CD23也被證明會事先形成三聚體或多聚體,牽涉許多過敏方面的疾病。在另一方面,有其它的研究指出CD23會被膜表面相關的蛋白酶分解,進而導致釋放水溶性的CD23 (sCD23)。本論文研究的目標,我們使用fibritin當作一個建構的基序,來促使水溶性的CD23形成穩定的三聚合體,我們稱此建構好的CD23為fibritin-CD23(fCD23),利用此fCD23可以幫助闡明小鼠CD23與免疫球蛋白E之間的相互關係。為了建構此fCD23,我們將T4噬菌體的fibritin基序結合到小鼠細胞膜外完整CD23的氨基端,接著我們在E coli.蛋白質表現系統下,成功地誘導出大量的fCD23,透過使用兩種不同的親和性管柱層析法來純化fCD23,以及利用西方式墨點法來偵測44-kDa的單聚體fCD23以及其交叉聯結的多聚合體。在IgE和fCD23的結合能力測試上,我們使用結合實驗以及ELISA來偵測fCD23的結合能力。更進一步的探討是否fCD23可以抑制IgE所媒介的發炎性媒介物的釋放,我們使用??-hexosaminidase釋放實驗來檢測fCD23抑制釋放的能力。總結而論,這些結果顯示出,我們所建構的fCD23具有抑制RBL-2H3細胞的去顆粒化作用。在未來我們可以持續研究fCD23的特性,用以建立一個較強效的IgE競爭性抑制劑。
CD23 is a type II immunoglobin E receptor (Fc?n?悐II), was been demonstrated that it has play a crucial role in regulating IgE-mediated diseases. It also has been shown that CD23 can preassociate trimeric or oligomeric form involving many allergic diseases. On the other hand, other reports indicated that CD23 was decayed by membrane related protease, leading to release soluble CD23 (sCD23). In this dissertation, we used fibritin as a construct motif to form a stable trimeric sCD23. It can be described as fibritin-CD23 (fCD23). Utilizing fCD23 can elucidate the correlation between mouse CD23 and IgE. To construct fCD23, T4 phage fibritin sequence was ligated to mouse CD23 N-terminal, and then we successful induced large amount of fCD23 by E. coli. protein expression system. Using two affinity chromatography columns to purify fCD23, and we detected 44-kDa monomer fCD23 and cross-linked oligomer fCD23 by western blot analysis. In IgE and CD23 binding ability test, we used binding assay and ELISA to detect fCD23 binding ability. To further investigate whether fCD23 can inhibit IgE-mediated inflammatory mediator release, we also used?n??-?{hexosaminidase release assay to examine the inhibitory effects of fCD23. Collectively, the results revealed that fCD23 can inhibit degranulation in RBL-2H3 cells. In the future, we will be studied fCD23 property, to establish strong competitive inhibitor for IgE.
中文摘要 I
Abstract II
致謝 III
目錄 IV
前言 1
Fc?悐?飽AIgE的高親和性受器(high affinity receptor) 4
Fc?悐II,IgE的低親和性受器(low affinity receptor) 4
1.1 發現及分佈 4
1.2 CD23之cDNA基因序列 7
1.3 結構 9
1.4 調節 12
1.5 多聚合體的性質 13
1.6 和IgE作用的位置 14
1.7 其他的配體 17
1.8 蛋白酶的分解 18
1.9 生物功能 19
1.10 研究目的 20
材料與方法 23
1. 建構fibritin-CD23 ( fCD23 )基因段及其選殖 24
1-1、fibritin聚合酶連鎖反應 ( Polymerase Chain reaction;PCR ): 24
1-2、CD23聚合酶連鎖反應: 25
1-3、利用DNA電泳確認PCR產物: 25
1-4、DNA純化 ( Gel Extraction ): 27
1-5、接合反應 ( TA - cloning ): 28
1-6、菌株轉型 ( Transformation ): 29
1-7、藍白篩選 ( Blue-white screening ): 17
1-8、用PCR篩選單一菌落 (PCR screening): 17
1-9、利用LB培養液培養單一菌落 (single colony): 19
1-10、小量萃取質體DNA ( mini-prep ): 19
1-11、限制酶處理,確認質體DNA ( Restriction Enzyme Digestion ): 20
1-12、菌種保存 ( Glycerol stock ): 20
1-13、大量萃取質體DNA ( maxi-prep ): 20
1-14、使用限制酶確認大量萃取的質體DNA: 21
1-15、接合反應pET 43.1a-CD23 (K/X) Ligation: 22
1-16、限制酶處理,確認接合後的pET 43.1a-CD23 (K/X): 22
1-17、限制酶處理: 22
1-18、接合反應pET 43.1a-CD23(K/X)-fibritin (E/K) Ligation: 23
1-19、限制酶處理,確認接合後的pET 43.1a-CD23(K/X)-fibritin (E/K): 23
1-20、DNA定序 ( sequencing ): 23
2 水溶性NusA-fCD23的蛋白質表現及親和性管柱(affinity column)純化 24
2-1、pET 43.1a-fCD23 ( E/K/X )轉型到E coli. (Origami B): 24
2-2、以IPTG誘導重組蛋白表現 ( IPTG induction ): 24
2-3、蛋白質電泳膠分析 ( SDS-PAGE ): 25
2-4、用超音波震盪破菌 ( Sonication ): 26
2-5、利用His•Tag親和性管柱純化重組蛋白 ( Ni2+ column ): 26
2-6、濃縮以及透析 ( Dialysis ): 27
2-7、利用S-protein agarose親和性管柱以及Thrombin純化重組蛋白: 28
3 水溶性fCD23融合蛋白的西方式墨點法(Western blotting)分析 28
3-1、蛋白質轉漬 ( transfer ): 28
3-2、西方式墨點法 (western boltting): 29
4 水溶性fCD23蛋白的ELISA 30
4-1、透析 ( dialysis ): 30
4-2、ELISA分析: 30
5 水溶性fCD23蛋白與IgE結合反應ELISA 31
fCD23-IgE ELISA分析: 31
6 化學交聯物質(EDC)反應分析 32
交叉連結反應 ( cross linking ): 32
7 RBL-2H3細胞培養 32
8 水溶性fCD23蛋白影響RBL-2H3細胞的??-hexosaminidase釋放分析 33
8-1、fCD23和IgE結合反應: 33
8-2、96孔盤細胞培養: 33
8-3、??-hexosaminidase釋放: 33
結果 35
1. 製備fibritin-CD23基因及其相關基因片段 35
2. 用E coli.表現融合蛋白 37
3. 融合蛋白fCD23的純化 41
4. 融合蛋白fCD23的ELISA以及和IgE結合能力的ELISA分析 45
5. 重組蛋白fCD23的活性分析(??-hexosaminidase release assay) 48
6. 重組蛋白fCD23的化學交叉連結(chemical crosslinking)分析 52
綜合討論 54
參考文獻 55
附錄 65


圖目錄

圖1. 比較人類和小鼠CD23胺基酸序列(50-53) 8
圖2. 人類和小鼠單體CD23的圖示(56) 11
圖3. CD23以三聚體型態結合IgE 16
圖4. 建構fCD23基因段 72
圖5. fibritin-CD23建構圖示 73
圖6. 用pET22b載體表現融合蛋白fCD23 76
圖7. 在不同的E coli.中,用pET43.1a載體表現融合蛋白fCD23 77
圖8. 在不同的溫度下,用E coli.(Origami B)菌株表現融合蛋白fCD23 78
圖9. 對照組的蛋白質表現 79
圖10. 細菌萃取液的水溶性蛋白質粗產物分析 81
圖11. 用親和性管柱純化水溶性融合蛋白fCD23 82
圖12. 確認水溶性蛋白質產物可以被Thrombin作用 83
圖13. 用親和性管柱純化水溶性對照組蛋白 84
圖14. 水溶性融合蛋白fCD23以及其和IgE結合的ELISA分析 87
圖15. 測定DNP-BSA刺激RBL-2H3細胞釋放??-hexosaminidase的條件 90
圖16. fCD23抑制RBL-2H3細胞釋放??-hexosaminidase的分析 93
圖17. fCD23可以藉由EDC交叉連結 95
表目錄

表1. 實驗菌株 23
表2. 載體 23
表3. 製備fibritin以及CD23基因段的引子 24
1. Ono, S. J. 2000. Molecular genetics of allergic diseases. Annu. Rev.
Immunol. 18:347.
2. Prausnitz, D. and H. Kustner. 1921 Studien uber die
Ueberempfindlichkeit. Zentrabl. Bakteriol [A] 86:160-175.
3. Ishizaka, K. and T. Ishizaka. 1967 Identification of IgE-antibodies as
a carrier of reaginic activity. J Immunol 99:1187-1198.
4.Capron, A., and J. P. Dessaint. 1992. Immunologic aspects of schistosomiasis. Annual review of medicine 43:209-218.
5.Grencis, R. K., K. J. Else, J. F. Huntley, and S. I. Nishikawa. 1993. The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite immunology 15:55-59.
6.Kasugai, T., H. Tei, M. Okada, S. Hirota, M. Morimoto, M. Yamada, A. Nakama, N. Arizono, and Y. Kitamura. 1995. Infection with Nippostrongylus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood 85:1334-1340.
7.Ushio, H., N. Watanabe, Y. Kiso, S. Higuchi, and H. Matsuda. 1993. Protective immunity and mast cell and eosinophil responses in mice infested with larval Haemaphysalis longicornis ticks. Parasite immunology 15:209-214.
8.Cabrera-Navarro, P. 2006. [Anti-immunoglobulin E, a monoclonal antibody to treat respiratory disorders]. Archivos de bronconeumologia 42:241-245.
9.Fahy, J. V. 2006. Anti-IgE: lessons learned from effects on airway inflammation and asthma exacerbation. The Journal of allergy and clinical immunology 117:1230-1232.
10.Ishizaka, K., H. Tomioka, and T. Ishizaka. 1970. Mechanisms of passive sensitization. I. Presence of IgE and IgG molecules on human leukocytes. J Immunol 105:1459-1467.
11.Tomioka, H., and K. Ishizaka. 1971. Mechanisms of passive sensitization. II. Presence of receptors for IgE on monkey mast cells. J Immunol 107:971-978.
12.Kinet, J. P. 1999. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annual review of immunology 17:931-972.
13.Lin, S., C. Cicala, A. M. Scharenberg, and J. P. Kinet. 1996. The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85:985-995.
14.Maurer, D., E. Fiebiger, B. Reininger, B. Wolff-Winiski, M. H. Jouvin, O. Kilgus, J. P. Kinet, and G. Stingl. 1994. Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. The Journal of experimental medicine 179:745-750.
15.Maurer, D., S. Fiebiger, C. Ebner, B. Reininger, G. F. Fischer, S. Wichlas, M. H. Jouvin, M. Schmitt-Egenolf, D. Kraft, J. P. Kinet, and G. Stingl. 1996. Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol 157:607-616.
16.Ishizaka, T., A. M. Dvorak, D. H. Conrad, J. R. Niebyl, J. P. Marquette, and K. Ishizaka. 1985. Morphologic and immunologic characterization of human basophils developed in cultures of cord blood mononuclear cells. J Immunol 134:532-540.
17.Rossi, G., S. A. Newman, and H. Metzger. 1977. Assay and partial characterization of the solubilized cell surface receptor for immunoglobulin E. The Journal of biological chemistry 252:704-711.
18.Lawrence, D. A., W. O. Weigle, and H. L. Spiegelberg. 1975. Immunoglobulins cytophilic for human lymphocytes, monocytes, and neutrophils. The Journal of clinical investigation 55:368-376.
19.Gonzalez-Molina, A., and H. L. Spiegelberg. 1976. Binding of IgE myeloma proteins to human cultured lymphoblastoid cells. J Immunol 117:1838-1845.
20.Yukawa, K., H. Kikutani, H. Owaki, K. Yamasaki, A. Yokota, H. Nakamura, E. L. Barsumian, R. R. Hardy, M. Suemura, and T. Kishimoto. 1987. A B cell-specific differentiation antigen, CD23, is a receptor for IgE (Fc epsilon R) on lymphocytes. J Immunol 138:2576-2580.
21.Rao, M., W. T. Lee, and D. H. Conrad. 1987. Characterization of a monoclonal antibody directed against the murine B lymphocyte receptor for IgE. J Immunol 138:1845-1851.
22.Kikutani, H., M. Suemura, H. Owaki, H. Nakamura, R. Sato, K. Yamasaki, E. L. Barsumian, R. R. Hardy, and T. Kishimoto. 1986. Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. The Journal of experimental medicine 164:1455-1469.
23.Waldschmidt, T. J., D. H. Conrad, and R. G. Lynch. 1988. The expression of B cell surface receptors. I. The ontogeny and distribution of the murine B cell IgE Fc receptor. J Immunol 140:2148-2154.
24.Waldschmidt, T. J., D. H. Conrad, and R. G. Lynch. 1989. Expression of B cell surface receptors. II. IL-4 can accelerate the developmental expression of the murine B cell IgE Fc receptor. J Immunol 143:2820-2827.
25.Yodoi, J., and K. Ishizaka. 1979. Lymphocytes bearing Fc receptors for IgE. I. Presence of human and rat T lymphocytes with Fc epsilon receptors. J Immunol 122:2577-2583.
26.Spiegelberg, H. L., L. F. Thompson, D. McNeil, and R. H. Buckley. 1985. IgE Fc receptor positive T, B and NK cells in patients with the hyper-IgE syndrome. International archives of allergy and applied immunology 77:277-279.
27.Kikutani, H., S. Inui, R. Sato, E. L. Barsumian, H. Owaki, K. Yamasaki, T. Kaisho, N. Uchibayashi, R. R. Hardy, T. Hirano, and et al. 1986. Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell 47:657-665.
28.Nagai, T., M. Adachi, N. Noro, J. Yodoi, and H. Uchino. 1985. T and B lymphocytes with immunoglobulin E Fc receptors (Fc epsilon R) in patients with nonallergic hyperimmunoglobulinemia E: demonstration using a monoclonal antibody against Fc epsilon R-associated antigen. Clinical immunology and immunopathology 35:261-275.
29.Vander-Mallie, R., T. Ishizaka, and K. Ishizaka. 1982. Lymphocytes bearing Fc receptor for IgE. VIII. Affinity of mouse IgE for Fc epsilon R on Mouse B lymphocytes. J Immunol 128:2306-2312.
30.Katona, I. M., J. F. Urban, Jr., J. A. Titus, D. A. Stephany, D. M. Segal, and F. D. Finkelman. 1984. Characterization of murine lymphocyte IgE receptors by flow microfluorometry. J Immunol 133:1521-1528.
31.Prinz, J. C., N. Endres, G. Rank, J. Ring, and E. P. Rieber. 1987. Expression of Fc epsilon receptors on activated human T lymphocytes. European journal of immunology 17:757-761.
32.Sarfati, M., T. B. Nutman, U. Suter, H. Hofstetter, and G. Delespesse. 1987. T-cell-derived IgE-binding factors. II. Purification and characterization of IgE-binding factors produced by human T cell leukemia/lymphoma virus-1-transformed T lymphocytes. J Immunol 139:4055-4060.
33.Delespesse, G., M. Sarfati, M. Rubio-Trujillo, and T. Wolowiec. 1986. IgE receptors on human lymphocytes. II. Detection of cells bearing IgE receptors in unstimulated mononuclear cells by means of a monoclonal antibody. European journal of immunology 16:815-821.
34.Armitage, R. J., L. K. Goff, and P. C. Beverley. 1989. Expression and functional role of CD23 on T cells. European journal of immunology 19:31-35.
35.Capron, A., J. P. Dessaint, M. Joseph, R. Rousseaux, M. Capron, and H. Bazin. 1977. Interaction between IgE complexes and macrophages in the rat: a new mechanism of macrophage activation. European journal of immunology 7:315-322.
36.Payet-Jamroz, M., S. L. Helm, J. Wu, M. Kilmon, M. Fakher, A. Basalp, J. G. Tew, A. K. Szakal, N. Noben-Trauth, and D. H. Conrad. 2001. Suppression of IgE responses in CD23-transgenic animals is due to expression of CD23 on nonlymphoid cells. J Immunol 166:4863-4869.
37.Capron, M., J. P. Kusnierz, L. Prin, H. L. Spiegelberg, J. Khalife, A. B. Tonnel, and A. Capron. 1985. Cytophilic IgE on human blood and tissue eosinophils. International archives of allergy and applied immunology 77:246-248.
38.Capron, M., J. P. Kusnierz, L. Prin, H. L. Spiegelberg, G. Ovlaque, P. Gosset, A. B. Tonnel, and A. Capron. 1985. Cytophilic IgE on human blood and tissue eosinophils: detection by flow microfluorometry. J Immunol 134:3013-3018.
39.Joseph, M., C. Auriault, A. Capron, H. Vorng, and P. Viens. 1983. A new function for platelets: IgE-dependent killing of schistosomes. Nature 303:810-812.
40.Anderson, C. L., and H. L. Spiegelberg. 1981. Macrophage receptors for IgE: binding of IgE to specific IgE Fc receptors on a human macrophage cell line, U937. J Immunol 126:2470-2473.
41.Vercelli, D., H. H. Jabara, B. W. Lee, N. Woodland, R. S. Geha, and D. Y. Leung. 1988. Human recombinant interleukin 4 induces Fc epsilon R2/CD23 on normal human monocytes. The Journal of experimental medicine 167:1406-1416.
42.Bieber, T., A. Rieger, C. Neuchrist, J. C. Prinz, E. P. Rieber, G. Boltz-Nitulescu, O. Scheiner, D. Kraft, J. Ring, and G. Stingl. 1989. Induction of Fc epsilon R2/CD23 on human epidermal Langerhans cells by human recombinant interleukin 4 and gamma interferon. The Journal of experimental medicine 170:309-314.
43.Yokota, A., H. Kikutani, T. Tanaka, R. Sato, E. L. Barsumian, M. Suemura, and T. Kishimoto. 1988. Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell 55:611-618.
44.Bettler, B., H. Hofstetter, M. Rao, W. M. Yokoyama, F. Kilchherr, and D. H. Conrad. 1989. Molecular structure and expression of the murine lymphocyte low-affinity receptor for IgE (Fc epsilon RII). Proceedings of the National Academy of Sciences of the United States of America 86:7566-7570.
45.Kondo, H., Y. Ichikawa, K. Nakamura, and S. Tsuchiya. 1994. Cloning of cDNAs for new subtypes of murine low-affinity Fc receptor for IgE (Fc epsilon RII/CD23). International archives of allergy and immunology 105:38-48.
46.Yokota, A., K. Yukawa, A. Yamamoto, K. Sugiyama, M. Suemura, Y. Tashiro, T. Kishimoto, and H. Kikutani. 1992. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proceedings of the National Academy of Sciences of the United States of America 89:5030-5034.
47.Ikuta, K., M. Takami, C. W. Kim, T. Honjo, T. Miyoshi, Y. Tagaya, T. Kawabe, and J. Yodoi. 1987. Human lymphocyte Fc receptor for IgE: sequence homology of its cloned cDNA with animal lectins. Proceedings of the National Academy of Sciences of the United States of America 84:819-823.
48.Ludin, C., H. Hofstetter, M. Sarfati, C. A. Levy, U. Suter, D. Alaimo, E. Kilchherr, H. Frost, and G. Delespesse. 1987. Cloning and expression of the cDNA coding for a human lymphocyte IgE receptor. The EMBO journal 6:109-114.
49.Gollnick, S. O., M. L. Trounstine, L. C. Yamashita, M. R. Kehry, and K. W. Moore. 1990. Isolation, characterization, and expression of cDNA clones encoding the mouse Fc receptor for IgE (Fc epsilon RII)1. J Immunol 144:1974-1982.
50.Akiyama, S. K., and K. M. Yamada. 1985. Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. The Journal of biological chemistry 260:10402-10405.
51.Aubry, J. P., S. Pochon, P. Graber, K. U. Jansen, and J. Y. Bonnefoy. 1992. CD21 is a ligand for CD23 and regulates IgE production. Nature 358:505-507.
52.Conrad, D. H. 1990. Fc epsilon RII/CD23: the low affinity receptor for IgE. Annual review of immunology 8:623-645.
53.Gould, H., B. Sutton, R. Edmeades, and A. Beavil. 1991. CD23/Fc epsilon RII: C-type lectin membrane protein with a split personality? Monographs in allergy 29:28-49.
54.Singer, S. J., P. A. Maher, and M. P. Yaffe. 1987. On the translocation of proteins across membranes. Proceedings of the National Academy of Sciences of the United States of America 84:1015-1019.
55.Singer, S. J., and M. P. Yaffe. 1990. Embedded or not? Hydrophobic sequences and membranes. Trends in biochemical sciences 15:369-373.
56.Lecoanet-Henchoz, S., J. F. Gauchat, J. P. Aubry, P. Graber, P. Life, N. Paul-Eugene, B. Ferrua, A. L. Corbi, B. Dugas, C. Plater-Zyberk, and et al. 1995. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3:119-125.
57.Dierks, S. E., W. C. Bartlett, R. L. Edmeades, H. J. Gould, M. Rao, and D. H. Conrad. 1993. The oligomeric nature of the murine Fc epsilon RII/CD23. Implications for function. J Immunol 150:2372-2382.
58.Keegan, A. D., and D. H. Conrad. 1987. The murine lymphocyte receptor for IgE. V. Biosynthesis, transport, and maturation of the B cell Fc epsilon receptor. J Immunol 139:1199-1205.
59.Beavil, A. J., R. L. Edmeades, H. J. Gould, and B. J. Sutton. 1992. Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins. Proceedings of the National Academy of Sciences of the United States of America 89:753-757.
60.Gould, H., B. Sutton, A. Beavil, R. Edmeades, and D. Martin. 1991. Immunoglobulin E receptors. Clin Exp Allergy 21 Suppl 1:138-147.
61.Bartlett, W. C., A. E. Kelly, C. M. Johnson, and D. H. Conrad. 1995. Analysis of murine soluble Fc epsilon RII sites of cleavage and requirements for dual-affinity interaction with IgE. J Immunol 154:4240-4246.
62.Kilmon, M. A., A. E. Shelburne, Y. Chan-Li, K. L. Holmes, and D. H. Conrad. 2004. CD23 trimers are preassociated on the cell surface even in the absence of its ligand, IgE. J Immunol 172:1065-1073.
63.Lee, W. T., and D. H. Conrad. 1986. Murine B cell hybridomas bearing ligand-inducible Fc receptors for IgE. J Immunol 136:4573-4580.
64.Yodoi, J., T. Ishizaka, and K. Ishizaka. 1979. Lymphocytes bearing Fc receptors for IgE. II. Induction of Fcepsilon-receptor bearing rat lymphocytes by IgE. J Immunol 123:455-462.
65.Delespesse, G., M. Sarfati, M. Rubio-Trujillo, and T. Wolowiec. 1986. IgE receptors on human lymphocytes. III. Expression of IgE receptors on mitogen-stimulated human mononuclear cells. European journal of immunology 16:1043-1047.
66.Lee, W. T., M. Rao, and D. H. Conrad. 1987. The murine lymphocyte receptor for IgE. IV. The mechanism of ligand-specific receptor upregulation on B cells. J Immunol 139:1191-1198.
67.Daeron, M., and K. Ishizaka. 1986. Induction of Fc epsilon receptors on mouse macrophages and lymphocytes by homologous IgE. J Immunol 136:1612-1619.
68.Hudak, S. A., S. O. Gollnick, D. H. Conrad, and M. R. Kehry. 1987. Murine B-cell stimulatory factor 1 (interleukin 4) increases expression of the Fc receptor for IgE on mouse B cells. Proceedings of the National Academy of Sciences of the United States of America 84:4606-4610.
69.Defrance, T., J. P. Aubry, F. Rousset, B. Vanbervliet, J. Y. Bonnefoy, N. Arai, Y. Takebe, T. Yokota, F. Lee, K. Arai, and et al. 1987. Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes. The Journal of experimental medicine 165:1459-1467.
70.Conrad, D. H., T. J. Waldschmidt, W. T. Lee, M. Rao, A. D. Keegan, R. J. Noelle, R. G. Lynch, and M. R. Kehry. 1987. Effect of B cell stimulatory factor-1 (interleukin 4) on Fc epsilon and Fc gamma receptor expression on murine B lymphocytes and B cell lines. J Immunol 139:2290-2296.
71.Coffman, R. L., and J. Carty. 1986. A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J Immunol 136:949-954.
72.Coffman, R. L., B. W. Seymour, D. A. Lebman, D. D. Hiraki, J. A. Christiansen, B. Shrader, H. M. Cherwinski, H. F. Savelkoul, F. D. Finkelman, M. W. Bond, and et al. 1988. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunological reviews 102:5-28.
73.Hosoda, M., S. Makino, T. Kawabe, Y. Maeda, S. Satoh, M. Takami, M. Mayumi, K. Arai, H. Saitoh, and J. Yodoi. 1989. Differential regulation of the low affinity Fc receptor for IgE (Fc epsilon R2/CD23) and the IL-2 receptor (Tac/p55) on eosinophilic leukemia cell line (EoL-1 and EoL-3). J Immunol 143:147-152.
74.Conrad, D. H., A. D. Keegan, K. R. Kalli, R. Van Dusen, M. Rao, and A. D. Levine. 1988. Superinduction of low affinity IgE receptors on murine B lymphocytes by lipopolysaccharide and IL-4. J Immunol 141:1091-1097.
75.Keegan, A. D., C. M. Snapper, R. Van Dusen, W. E. Paul, and D. H. Conrad. 1989. Superinduction of the murine B cell Fc epsilon RII by T helper cell clones. Role of IL-4. J Immunol 142:3868-3874.
76.Punnonen, J., G. Aversa, B. G. Cocks, and J. E. de Vries. 1994. Role of interleukin-4 and interleukin-13 in synthesis of IgE and expression of CD23 by human B cells. Allergy 49:576-586.
77.Punnonen, J., G. Aversa, B. G. Cocks, A. N. McKenzie, S. Menon, G. Zurawski, R. de Waal Malefyt, and J. E. de Vries. 1993. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proceedings of the National Academy of Sciences of the United States of America 90:3730-3734.
78.de Waal Malefyt, R., C. G. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett, J. Culpepper, W. Dang, G. Zurawski, and J. E. de Vries. 1993. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol 151:6370-6381.
79.Punnonen, J., and J. E. de Vries. 1994. IL-13 induces proliferation, Ig isotype switching, and Ig synthesis by immature human fetal B cells. J Immunol 152:1094-1102.
80.Lee, W. T., and D. H. Conrad. 1985. The murine lymphocyte receptor for IgE. III. Use of chemical cross-linking reagents to further characterize the B lymphocyte Fc epsilon receptor. J Immunol 134:518-525.
81.Chretien, I., B. A. Helm, P. J. Marsh, E. A. Padlan, J. Wijdenes, and J. Banchereau. 1988. A monoclonal anti-IgE antibody against an epitope (amino acids 367-376) in the CH3 domain inhibits IgE binding to the low affinity IgE receptor (CD23). J Immunol 141:3128-3134.
82.Keegan, A. D., C. Fratazzi, B. Shopes, B. Baird, and D. H. Conrad. 1991. Characterization of new rat anti-mouse IgE monoclonals and their use along with chimeric IgE to further define the site that interacts with Fc epsilon RII and Fc epsilon RI. Molecular immunology 28:1149-1154.
83.Vercelli, D., B. Helm, P. Marsh, E. Padlan, R. S. Geha, and H. Gould. 1989. The B-cell binding site on human immunoglobulin E. Nature 338:649-651.
84.Bettler, B., R. Maier, D. Ruegg, and H. Hofstetter. 1989. Binding site for IgE of the human lymphocyte low-affinity Fc epsilon receptor (Fc epsilon RII/CD23) is confined to the domain homologous with animal lectins. Proceedings of the National Academy of Sciences of the United States of America 86:7118-7122.
85.Richards, M. L., and D. H. Katz. 1990. The binding of IgE to murine Fc epsilon RII is calcium-dependent but not inhibited by carbohydrate. J Immunol 144:2638-2646.
86.Drickamer, K., M. S. Dordal, and L. Reynolds. 1986. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. The Journal of biological chemistry 261:6878-6887.
87.Garman, S. C., B. A. Wurzburg, S. S. Tarchevskaya, J. P. Kinet, and T. S. Jardetzky. 2000. Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 406:259-266.
88.Helm, B., P. Marsh, D. Vercelli, E. Padlan, H. Gould, and R. Geha. 1988. The mast cell binding site on human immunoglobulin E. Nature 331:180-183.
89.Wurzburg, B. A., S. C. Garman, and T. S. Jardetzky. 2000. Structure of the human IgE-Fc C epsilon 3-C epsilon 4 reveals conformational flexibility in the antibody effector domains. Immunity 13:375-385.
90.Suemura, M., H. Kikutani, K. Sugiyama, N. Uchibayashi, M. Aitani, T. Kuritani, E. L. Barsumian, A. Yamatodani, and T. Kishimoto. 1991. Significance of soluble Fc epsilon receptor II (sFc epsilon RII/CD23) in serum and possible application of sFc epsilon RII for the prevention of allergic reactions. Allergy Proc 12:133-137.
91.Pochon, S., P. Graber, M. Yeager, K. Jansen, A. R. Bernard, J. P. Aubry, and J. Y. Bonnefoy. 1992. Demonstration of a second ligand for the low affinity receptor for immunoglobulin E (CD23) using recombinant CD23 reconstituted into fluorescent liposomes. The Journal of experimental medicine 176:389-397.
92.Carter, R. H., and D. T. Fearon. 1992. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science (New York, N.Y 256:105-107.
93.O''Rourke, L., R. Tooze, and D. T. Fearon. 1997. Co-receptors of B lymphocytes. Current opinion in immunology 9:324-329.
94.O''Rourke, L. M., R. Tooze, M. Turner, D. M. Sandoval, R. H. Carter, V. L. Tybulewicz, and D. T. Fearon. 1998. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8:635-645.
95.Tedder, T. F., L. J. Zhou, and P. Engel. 1994. The CD19/CD21 signal transduction complex of B lymphocytes. Immunology today 15:437-442.
96.Degawa, N., K. Maeda, M. Matsuda, R. Nagashima, S. Fuyama, M. Ito, S. Arai, and Y. Imai. 1995. An immunohistochemical study on isotypes of the immune complexes trapped by follicular dendritic cells (FDC) in various human lymphoid tissues. Advances in experimental medicine and biology 378:281-283.
97.Fremeaux-Bacchi, V., J. P. Aubry, J. Y. Bonnefoy, M. D. Kazatchkine, J. P. Kolb, and E. M. Fischer. 1998. Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. European journal of immunology 28:4268-4274.
98.Aubry, J. P., N. Dugas, S. Lecoanet-Henchoz, F. Ouaaz, H. Zhao, J. F. Delfraissy, P. Graber, J. P. Kolb, B. Dugas, and J. Y. Bonnefoy. 1997. The 25-kDa soluble CD23 activates type III constitutive nitric oxide-synthase activity via CD11b and CD11c expressed by human monocytes. J Immunol 159:614-622.
99.Bayon, Y., A. Alonso, and M. Sanchez Crespo. 1998. Immunoglobulin-E/dinitrophenyl complexes induce nitric oxide synthesis in rat peritoneal macrophages by a mechanism involving CD23 and NF-kappa B activation. Biochemical and biophysical research communications 242:570-574.
100.Dugas, B., M. D. Mossalayi, C. Damais, and J. P. Kolb. 1995. Nitric oxide production by human monocytes: evidence for a role of CD23. Immunology today 16:574-580.
101.Gosset, P., I. Tillie-Leblond, S. Oudin, O. Parmentier, B. Wallaert, M. Joseph, and A. B. Tonnel. 1999. Production of chemokines and proinflammatory and antiinflammatory cytokines by human alveolar macrophages activated by IgE receptors. The Journal of allergy and clinical immunology 103:289-297.
102.Herbelin, A., S. Elhadad, F. Ouaaz, D. de Groote, and B. Descamps-Latscha. 1994. Soluble CD23 potentiates interleukin-1-induced secretion of interleukin-6 and interleukin-1 receptor antagonist by human monocytes. European journal of immunology 24:1869-1873.
103.Hunot, S., N. Dugas, B. Faucheux, A. Hartmann, M. Tardieu, P. Debre, Y. Agid, B. Dugas, and E. C. Hirsch. 1999. FcepsilonRII/CD23 is expressed in Parkinson''s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19:3440-3447.
104.Lecoanet-Henchoz, S., C. Plater-Zyberk, P. Graber, D. Gretener, J. P. Aubry, D. H. Conrad, and J. Y. Bonnefoy. 1997. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18. European journal of immunology 27:2290-2294.
105.Kleinau, S., P. Martinsson, S. Gustavsson, and B. Heyman. 1999. Importance of CD23 for collagen-induced arthritis: delayed onset and reduced severity in CD23-deficient mice. J Immunol 162:4266-4270.
106.Plater-Zyberk, C., and J. Y. Bonnefoy. 1995. Marked amelioration of established collagen-induced arthritis by treatment with antibodies to CD23 in vivo. Nature medicine 1:781-785.
107.Brooks, P. C., S. Stromblad, L. C. Sanders, T. L. von Schalscha, R. T. Aimes, W. G. Stetler-Stevenson, J. P. Quigley, and D. A. Cheresh. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683-693.
108.Felding-Habermann, B., and D. A. Cheresh. 1993. Vitronectin and its receptors. Current opinion in cell biology 5:864-868.
109.Hermann, P., M. Armant, E. Brown, M. Rubio, H. Ishihara, D. Ulrich, R. G. Caspary, F. P. Lindberg, R. Armitage, C. Maliszewski, G. Delespesse, and M. Sarfati. 1999. The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. The Journal of cell biology 144:767-775.
110.Ashton, B. A., I. K. Ashton, M. J. Marshall, and R. C. Butler. 1993. Localisation of vitronectin receptor immunoreactivity and tartrate resistant acid phosphatase activity in synovium from patients with inflammatory or degenerative arthritis. Annals of the rheumatic diseases 52:133-137.
111.Feldman, M., P. Taylor, E. Paleolog, F. M. Brennan, and R. N. Maini. 1998. Anti-TNF alpha therapy is useful in rheumatoid arthritis and Crohn''s disease: analysis of the mechanism of action predicts utility in other diseases. Transplantation proceedings 30:4126-4127.
112.Sarfati, M., T. Nakajima, H. Frost, E. Kilccherr, and G. Delespesse. 1987. Purification and partial biochemical characterization of IgE-binding factors secreted by a human B lymphoblastoid cell line. Immunology 60:539-545.
113.Letellier, M., T. Nakajima, G. Pulido-Cejudo, H. Hofstetter, and G. Delespesse. 1990. Mechanism of formation of human IgE-binding factors (soluble CD23): III. Evidence for a receptor (Fc epsilon RII)-associated proteolytic activity. The Journal of experimental medicine 172:693-700.
114.Bailey, S., B. Bolognese, D. R. Buckle, A. Faller, S. Jackson, P. Louis-Flamberg, M. McCord, R. J. Mayer, L. A. Marshall, and D. G. Smith. 1998. Selective inhibition of low affinity IgE receptor (CD23) processing. Bioorganic & medicinal chemistry letters 8:29-34.
115.Bailey, S., B. Bolognese, A. Faller, P. Louis-Flamberg, D. T. MacPherson, R. J. Mayer, L. A. Marshall, P. H. Milner, J. Mistry, D. G. Smith, and J. G. Ward. 1999. Selective inhibition of low affinity IgE receptor (CD23) processing: P1'' bicyclomethyl substituents. Bioorganic & medicinal chemistry letters 9:3165-3170.
116.Marolewski, A. E., D. R. Buckle, G. Christie, D. L. Earnshaw, P. L. Flamberg, L. A. Marshall, D. G. Smith, and R. J. Mayer. 1998. CD23 (FcepsilonRII) release from cell membranes is mediated by a membrane-bound metalloprotease. The Biochemical journal 333 ( Pt 3):573-579.
117.Mayer, R. J., B. J. Bolognese, N. Al-Mahdi, R. M. Cook, P. L. Flamberg, M. J. Hansbury, S. Khandekar, E. Appelbaum, A. Faller, and L. A. Marshall. 2000. Inhibition of CD23 processing correlates with inhibition of IL-4-stimulated IgE production in human PBL and hu-PBL-reconstituted SCID mice. Clin Exp Allergy 30:719-727.
118.Wheeler, D. J., S. Parveen, K. Pollock, and R. J. Williams. 1998. Inhibition of sCD23 and immunoglobulin E release from human B cells by a metalloproteinase inhibitor, GI 129471. Immunology 95:105-110.
119.Letellier, M., M. Sarfati, and G. Delespesse. 1989. Mechanisms of formation of IgE-binding factors (soluble CD23)--I. Fc epsilon R II bearing B cells generate IgE-binding factors of different molecular weights. Molecular immunology 26:1105-1112.
120.Payet, M., and D. H. Conrad. 1999. IgE regulation in CD23 knockout and transgenic mice. Allergy 54:1125-1129.
121.Payet, M. E., E. C. Woodward, and D. H. Conrad. 1999. Humoral response suppression observed with CD23 transgenics. J Immunol 163:217-223.
122.Sherr, E., E. Macy, H. Kimata, M. Gilly, and A. Saxon. 1989. Binding the low affinity Fc epsilon R on B cells suppresses ongoing human IgE synthesis. J Immunol 142:481-489.
123.Sarfati, M., and G. Delespesse. 1988. Possible role of human lymphocyte receptor for IgE (CD23) or its soluble fragments in the in vitro synthesis of human IgE. J Immunol 141:2195-2199.
124.Liu, Y. J., J. A. Cairns, M. J. Holder, S. D. Abbot, K. U. Jansen, J. Y. Bonnefoy, J. Gordon, and I. C. MacLennan. 1991. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. European journal of immunology 21:1107-1114.
125.Bertho, J. M., C. Fourcade, A. H. Dalloul, P. Debre, and M. D. Mossalayi. 1991. Synergistic effect of interleukin 1 and soluble CD23 on the growth of human CD4+ bone marrow-derived T cells. European journal of immunology 21:1073-1076.
126.Mossalayi, M. D., M. Arock, J. M. Bertho, C. Blanc, A. H. Dalloul, H. Hofstetter, M. Sarfati, G. Delespesse, and P. Debre. 1990. Proliferation of early human myeloid precursors induced by interleukin-1 and recombinant soluble CD23. Blood 75:1924-1927.
127.Mossalayi, M. D., J. C. Lecron, A. H. Dalloul, M. Sarfati, J. M. Bertho, H. Hofstetter, G. Delespesse, and P. Debre. 1990. Soluble CD23 (Fc epsilon RII) and interleukin 1 synergistically induce early human thymocyte maturation. The Journal of experimental medicine 171:959-964.
128.Pirron, U., T. Schlunck, J. C. Prinz, and E. P. Rieber. 1990. IgE-dependent antigen focusing by human B lymphocytes is mediated by the low-affinity receptor for IgE. European journal of immunology 20:1547-1551.
129.Kehry, M. R., and L. C. Yamashita. 1989. Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE-dependent antigen focusing. Proceedings of the National Academy of Sciences of the United States of America 86:7556-7560.
130.Maeda, K., G. F. Burton, D. A. Padgett, D. H. Conrad, T. F. Huff, A. Masuda, A. K. Szakal, and J. G. Tew. 1992. Murine follicular dendritic cells and low affinity Fc receptors for IgE (Fc epsilon RII). J Immunol 148:2340-2347.
131.Heyman, B., L. Tianmin, and S. Gustavsson. 1993. In vivo enhancement of the specific antibody response via the low-affinity receptor for IgE. European journal of immunology 23:1739-1742.
132.Gustavsson, S., S. Wernersson, and B. Heyman. 2000. Restoration of the antibody response to IgE/antigen complexes in CD23-deficient mice by CD23+ spleen or bone marrow cells. J Immunol 164:3990-3995.
133.Gonzalez, L., Jr., J. J. Plecs, and T. Alber. 1996. An engineered allosteric switch in leucine-zipper oligomerization. Nature structural biology 3:510-515.
134.O''Shea, E. K., R. Rutkowski, and P. S. Kim. 1989. Evidence that the leucine zipper is a coiled coil. Science (New York, N.Y 243:538-542.
135.Rasmussen, R., D. Benvegnu, E. K. O''Shea, P. S. Kim, and T. Alber. 1991. X-ray scattering indicates that the leucine zipper is a coiled coil. Proceedings of the National Academy of Sciences of the United States of America 88:561-564.
136.Harbury, P. B., P. S. Kim, and T. Alber. 1994. Crystal structure of an isoleucine-zipper trimer. Nature 371:80-83.
137.Harbury, P. B., T. Zhang, P. S. Kim, and T. Alber. 1993. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science (New York, N.Y 262:1401-1407.
138.Fanslow, W. C., S. Srinivasan, R. Paxton, M. G. Gibson, M. K. Spriggs, and R. J. Armitage. 1994. Structural characteristics of CD40 ligand that determine biological function. Seminars in immunology 6:267-278.
139.Walczak, H., R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith, M. Kubin, W. Chin, J. Jones, A. Woodward, T. Le, C. Smith, P. Smolak, R. G. Goodwin, C. T. Rauch, J. C. Schuh, and D. H. Lynch. 1999. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature medicine 5:157-163.
140.Wu, X., Y. He, L. D. Falo, Jr., K. M. Hui, and L. Huang. 2001. Regression of human mammary adenocarcinoma by systemic administration of a recombinant gene encoding the hFlex-TRAIL fusion protein. Mol Ther 3:368-374.
141.Kelly, A. E., B. H. Chen, E. C. Woodward, and D. H. Conrad. 1998. Production of a chimeric form of CD23 that is oligomeric and blocks IgE binding to the Fc epsilonRI. J Immunol 161:6696-6704.
142.Letarov, A., X. Manival, C. Desplats, and H. M. Krisch. 2005. gpwac of the T4-type bacteriophages: structure, function, and evolution of a segmented coiled-coil protein that controls viral infectivity. Journal of bacteriology 187:1055-1066.
143.Boudko, S. P., Y. Y. Londer, A. V. Letarov, N. V. Sernova, J. Engel, and V. V. Mesyanzhinov. 2002. Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coil protein. European journal of biochemistry / FEBS 269:833-841.
144.Mesyanzhinov, V. V., P. G. Leiman, V. A. Kostyuchenko, L. P. Kurochkina, K. A. Miroshnikov, N. N. Sykilinda, and M. M. Shneider. 2004. Molecular architecture of bacteriophage T4. Biochemistry 69:1190-1202.
145.Efimov, V. P., I. V. Nepluev, B. N. Sobolev, T. G. Zurabishvili, T. Schulthess, A. Lustig, J. Engel, M. Haener, U. Aebi, S. Venyaminov, and et al. 1994. Fibritin encoded by bacteriophage T4 gene wac has a parallel triple-stranded alpha-helical coiled-coil structure. Journal of molecular biology 242:470-486.
146.Sobolev, B. N., and V. V. Mesyanzhinov. 1991. The wac gene product of bacteriophage T4 contains coiled-coil structural patterns. Journal of biomolecular structure & dynamics 8:953-965.
147.Letarov, A. V., Y. Y. Londer, S. P. Boudko, and V. V. Mesyanzhinov. 1999. The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. Biochemistry 64:817-823.
148.Strelkov, S. V., Y. Tao, M. M. Shneider, V. V. Mesyanzhinov, and M. G. Rossmann. 1998. Structure of bacteriophage T4 fibritin M: a troublesome packing arrangement. Acta crystallographica 54:805-816.
149.Tao, Y., S. V. Strelkov, V. V. Mesyanzhinov, and M. G. Rossmann. 1997. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5:789-798.
150.Frank, S., R. A. Kammerer, D. Mechling, T. Schulthess, R. Landwehr, J. Bann, Y. Guo, A. Lustig, H. P. Bachinger, and J. Engel. 2001. Stabilization of short collagen-like triple helices by protein engineering. Journal of molecular biology 308:1081-1089.
151.Papanikolopoulou, K., V. Forge, P. Goeltz, and A. Mitraki. 2004. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin. The Journal of biological chemistry 279:8991-8998.
152.Krasnykh, V., N. Belousova, N. Korokhov, G. Mikheeva, and D. T. Curiel. 2001. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. Journal of virology 75:4176-4183.
153.Stetefeld, J., S. Frank, M. Jenny, T. Schulthess, R. A. Kammerer, S. Boudko, R. Landwehr, K. Okuyama, and J. Engel. 2003. Collagen stabilization at atomic level: crystal structure of designed (GlyProPro)10foldon. Structure 11:339-346.
154.Yang, X., J. Lee, E. M. Mahony, P. D. Kwong, R. Wyatt, and J. Sodroski. 2002. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. Journal of virology 76:4634-4642.
155.Miroshnikov, K. A., E. I. Marusich, M. E. Cerritelli, N. Cheng, C. C. Hyde, A. C. Steven, and V. V. Mesyanzhinov. 1998. Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein engineering 11:329-332.
156.Miroshnikov, K. A., N. V. Sernova, M. M. Shneider, and V. V. Mesyanzhinov. 2000. Transformation of a fragment of beta-structural bacteriophage T4 adhesin to stable alpha-helical trimer. Biochemistry 65:1346-1351.
157.De Marco, V., G. Stier, S. Blandin, and A. de Marco. 2004. The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochemical and biophysical research communications 322:766-771.
158.Li, M., and S. He. 2006. Purification and characterization of recombinant human interleukin-29 expressed in Escherichia coli. Journal of biotechnology 122:334-340.
159.Chen, B. H., C. Ma, T. H. Caven, Y. Chan-Li, A. Beavil, R. Beavil, H. Gould, and D. H. Conrad. 2002. Necessity of the stalk region for immunoglobulin E interaction with CD23. Immunology 107:373-381.
160.Chen, B. H., M. A. Kilmon, C. Ma, T. H. Caven, Y. Chan-Li, A. E. Shelburne, R. M. Tombes, E. Roush, and D. H. Conrad. 2003. Temperature effect on IgE binding to CD23 versus Fc epsilon RI. J Immunol 170:1839-1845.
161.Lee, W. T., and D. H. Conrad. 1984. The murine lymphocyte receptor for IgE. II. Characterization of the multivalent nature of the B lymphocyte receptor for IgE. The Journal of experimental medicine 159:1790-1795.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文