跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁婷
研究生(外文):Yuh-Tyng Huang
論文名稱:改善高吸濕性藥品(pyridostigminebromide)之長效處方設計及其體內體外相關性之研究
論文名稱(外文):A sustained-release formulation study on the hygroscopic drug (pyridostigmine bromide) and the investigation of in vitro/in vivo correlation characteristics
指導教授:詹道明詹道明引用關係
指導教授(外文):Thau-Ming Cham
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:189
中文關鍵詞:長效圓粒錠長效圓粒壓搓圓法直接壓錠法流動床包衣法Taguchi實驗設計法23複因子實驗設計法零階次模式吸濕特性體內-體外相關性乙醯膽鹼游離藥品(蛋白未結合藥品)微透析技術
外文關鍵詞:Sustained-release tableted-pelletsSustained-release pelletsExtrusion-spheronization methodDirect-compression methodFluid-bed methodTaguchi experimental design23 full factorial designZero-order mechanismHygroscopic characterIn vitro-In vivo correlationAcetylcholineProtein unbound drugMicrodialysis technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:642
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究選擇一具高吸濕特性之藥品(pyridostigmine bromide;以下簡稱PB)為模式藥。在整個實驗過程,利用擠壓搓圓法、直接壓錠法及流動床包衣法將PB製成長效劑型(長效圓粒錠及長效圓粒);並利用實驗設計法來篩選最佳處方及探討製備過程中最具有影響之因子。在體外試驗的部份,首先利用Taguchi實驗設計法來篩選以擠壓搓圓方法製備含藥之核心圓粒最佳處方;並探討於製程中最具有影響的因子。進一步再利用23複因子實驗設計法來篩選一組最佳之長效製劑處方進行動物體內體外相關性實驗。我們期許這組最佳處方能於溶離之特定時間點能釋出特定的藥量;並以零階次的模式來釋出藥品。(對於最佳的長效圓粒錠而言,藥品於1小時,6小時及12小時的溶離時間點分別釋出15.84%,58.56% 及93.10%;而對於最佳的長效圓粒來說,藥品於1小時,6小時,12小時及24小時的溶離時間點則分別釋出6.24%,33.48%,75.18% 及95.26%)。由卡式水分測定儀所得之結果得知,本實驗所製備的二組最佳長效製劑處方均有改善PB吸濕特性的缺點。
在體內試驗,由計算所得的藥物動力學數據顯示,本實驗中製備的兩組最佳長效製劑處方所達血中最高濃度之時間(Tmax)比市售速效錠長,且血中時間-濃度曲線下面積也比市售速效錠大,並具有良好的體內-體外相關性。最後,取最佳長效圓粒處方進行動物體內之微透析試驗。經投藥後,由體內乙醯膽鹼及游離藥品(蛋白未結合藥品)之釋出百分率得知,本實驗中自製之長效圓粒處方於體內釋出之速率比市售速效錠及注射劑慢;此種現象就代表自製之長效圓粒處方於體內作用時間比市售速效錠及注射劑長,能達長效持續釋出之作用。
我們期許本實驗自製之長效製劑處方,未來若運用於危險恐怖攻擊或戰爭時能改善一些事後解毒劑之限制,並減少投藥次數及增加藥品於體內作用的時間。
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. The PB sustained-release (SR) dosage forms (SR tableted-pellets and SR pellets) that were developed by extrusion-spheronization, direct compression and fluid-bed methods using Taguchi experimental and 23 full factorial design. Preceding in vitro studies, Taguchi experimental design was used to optimize formulations and process parameters for the extrusion-spheronization process to prepare drug-containing core pellets. Moreover, 23 full factorial design was utilized to search for the optimal PB-SR dosage forms with specific release rate at different time intervals (the released % of 1h, 6h and 12h were 15.84%, 58.56% and 93.10% for SR tableted-pellets and the release % of 2h, 6h, 12h and 24 h were 6.24 %, 33.48 %, 75.18 % and 95.26 % for SR pellets) and follow zero-order mechanism. The results of moisture absorption by Karl Fischer meter shown the optimal PB-SR dosage forms could improve the hygroscopic defect of pure drug (PB).
In the in vivo study, the results of the bioavailability data showed the Tmax and AUC0-t were prolonged and increased for optimal PB-SR dosage forms when compared with commercial immediate release (IR) tablets. Furthermore, a good linear regression relationship was observed between the fraction dissolution and fraction absorption for the optimal PB-SR dosage forms. Finally, the PB-SR pellets were chosen to proceed the microdialysis study. According to the results of microdialysis technique shown that the release of acetylcholine and the release of protein unbound drug for the PB-SR pellets were slower than IV-injection and commercial IR tablets; this phenomenon indicating that the occupancy time of drug efficacy in vivo of PB-SR pellet was longer than the others, that is to say, the PB-SR pellets provided with SR effect in vivo as well.
We believe that PB-SR dosage forms designed in our study would improve limitations of post-exposure antidotes, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo, for personnel exposed to contamination situations in wars or terrorist attacks in the future.
Tables……………………………………………………………i
Figures…………………………………………………………… iv

中文摘要…………………………………………………………. viii

Abstract………………………………………………………… x

1. Introduction………………………………………………… 1
1.1.Background………………………………………………… 1
1.2. Outlines of pyridostigmine bromide (PB)………… 4
1.2.1. Physicochemical properties………………………… 4
1.2.2. Pharmacology…………………………………………… 6
1.2.3. Pharmacokinetic (PK) and pharmacodynamic (PD) 7
1.2.3.1. Absorption…………………………………………… 7
1.2.3.2. Distribution………………………………………… 7
1.2.3.3. Metabolism ?t Elimination……………………… 7
1.2.4. Adverse reactions…………………………………… 9
1.3. Pellets…………………………………………………… 10
1.4. Modified oral drug release………………………… 14
1.4.1. Tableting……………………………………………… 16
1.4.2. Coating………………………………………………… 18
1.4.2.1. Fluid-bed equipment………………………………21
1.5. SR materials (polymers) ?t excipients…………… 26
1.5.1. Hydroxypropylmethyl cellulose (HPMC)…………… 26
1.5.2. Surelease?窗K………………………………………… 27
1.5.3. Opadry II ?t Opadry II HP…………29
1.6. Microdialysisstudy…………………………………… 31
1.6.1. A brief illustration………………………………… 31
1.6.2. Advantages of microdialysis technique………… 34
1.6.3. Disadvantages of microdialysis technique……… 35
1.6.4. Recovery of Microdialysis………………………… 36
1.7. In vitro/In vivo correlations (IVIVC)……………39
1.7.1. A brief illustration……………………………… 39
1.7.2. Categories of in vitro/in vivo correlations… 40
1.8. Experimental design…………………………………… 43
1.8.1. A brief introduction of experimental design… 43
1.8.2. The 23 full factorial design………………………45
1.8.3. The estimation of effects for 23 full factorial design…46
1.8.4. The Taguchi experimental design……………………50
1.9. Release mechanism of SR dosage forms……………52
2. The aim of this study………………………………………53
3. Materials and methods……………………………………56
3.1. Materials……………………………………………………56
3.1.1. Drug and excipients………………………………… 56
3.1.2. Analytical grade reagents……………………………56
3.1.3. Other chemical reagents…………………………… 57
3.2. Experimental methods…………………………………… 58
3.2.1. PB core pellets……………………………………… 58
3.2.1.1. Preparation of PB core pellets……………………58
3.2.1.2. Microscopic image analysis (determination of core
pellet shape) ……………………………58
3.2.1.3. Sieve analysis (determination of yield of core
pellet)……….59
3.2.2. PB-SR tableted-pellets……………………………… 61
3.2.2.1. Preparation of granules (external excipients)…61
3.2.2.2. Preparation of PB-SR……………………………… 61
3.2.3. PB-SR pellets………………………………………… 64
3.2.3.1. Preparation of PB-SR pellets…………………… 64
3.2.4. In-vitro study of PB………………………………… 68
3.2.4.1. Scanning electron microscopy……………………68
3.2.4.2. In vitro dissolution studies of PB-SR dosage
forms…68
3.2.4.3. High performance liquid chromatography (HPLC)
conditions……………………………………69
3.2.4.4. Exposure to stability conditions for estimating
the hygroscopic character of PB…………………71
3.2.5. In-vivo study of PB……………………………72
3.2.5.1. Animal treatment…………………………………72
3.2.5.2. Pretreatment (extraction method of blood sample)74
3.2.5.3. HPLC conditions………………………………… 74
3.2.5.4. Data analysis……………………………………… 77
3.2.6. Experimental design………………………………… 79
3.2.6.1. Taguchi experimental design………………………79
3.2.6.2. 23 full factorial design………………………… 80
3.2.7. Release mechanism of PB-SR dosage forms……… 81
3.2.8. Microdialysis study………………………………… 82
3.2.8.1. Animal treatment and dialysis technique…… 82
3.2.8.2. Data analysis……………………………………… 83
3.2.8.3. HPLC conditions of protein unbound drug (PB)88
3.2.8.4. HPLC conditions of ACh…………………………… 90
3.2.8.5. In vitro-in vivo Recovery……………………… 93
4. Results and discussion………………………………… 94
4.1. In-vitro study…………………………………………… 94
4.1.1. HPLC conditions……………………………………… 94
4.1.1.1. Determination of suitable wavelength………… 94
4.1.1.2. Chromatogram of PB…………………………………94
4.1.1.3. Calibration curve………………………………… 94
4.1.1.4. Assay validation (intra-day precision inter-day p recision)……………………………………………95
4.1.1.5. Accuracy……………………………………………… 95
4.1.2. Evaluation of preparation process variables of PB core pellets using Taguchi experimental design………100
4.1.3. In-vitro dissolution study of PB from SR dosage
forms……108
4.1.3.1. PB-SR tableted-pellets…………………………108
4.1.3.2. PB-SR pellets……………………………………114
4.1.4. The release mechanism of PB from PB-SR dosage
forms…………119
4.1.4.1. PB-SR tableted-pellets…………………………119
4.1.4.2. PB-SR pellets……………………………………119
4.1.5. Evaluation of drug release and release mechanism
from PB–SR dosage forms using 23 full factorial
design…………121
4.1.5.1. PB-SR tableted-pellets…………………………121
4.1.5.2. PB-SR pellets………………………………………121
4.1.6. Optimization of formulations using 23 full
factorial design…..125
4.1.7. Exposure to accelerated and long-term stability
conditions for estimating the hygroscopic character
of PB-SR dosage forms…………………………………129
4.2. In vivo absorption study……………………………… 134
4.2.1. HPLC conditions……………………………………… 134
4.2.1.1. Chromatogram of PB…………………………………134
4.2.1.2. Calibration curve of PB…………………………134
4.2.1.3. Assay validation (intra-day precision ?t inter-
day precision).……134
4.2.1.4. Accuracy……………………………………………… 135
4.2.1.5. Recovery……………………………………………… 135
4.2.1.6. Limits of detection (LOD) and limit of
quantification (LOQ).…………………………… 135
4.2.2. Pharmacokinetics………………………………………140
4.2.3. In vitro-In vivocorrelation………………………143
4.3. Microdialysis study……………………………………145
4.3.1. Protein unbound drug (PB)………………………145
4.3.1.1. Chromatogram……………………………………… 145
4.3.1.2. Calibration curve……………………………………145
4.3.1.3. Assay validation (intra-day precision inter-day
precision) 145
4.3.1.4. Accuracy……………………………………………… 150
4.3.1.5. In-vitro recovery In-vivo recovery…………… 150
4.3.1.6. Limit of detection (LOD) limit of quantification
(LOQ)……………150
4.3.1.7. In-vivo study (pharmacokinetics IVIVC)………150
4.3.2. Acetylcholine………………………………………… 155
4.3.2.1. Chromatogram……………………………………… 155
4.3.2.2. Calibration curve………………………………… 155
4.3.2.3. Assay validation (intra-day precision inter-day
precision)………155
4.3.2.4. Accuracy……………………………………………… 156
4.3.2.5. In-vitro recovery In-vivo recovery…………… 156
4.3.2.6. Limit of detection (LOD) limit of quantification
(LOQ)…156
4.3.2.7. In-vivo release of ACh in skeletalmuscle……161
4.3.2.8. Relationship between the release of ACh in
skeletal muscle and the release of protein
unbound drug (PB) in blood……162
4.3.2.9. Comprehensiveness………………………………… 166
5. Conclusion………………………………………………… 167
6. References...................................... 170
7. Publishing paper…………………………………………… 187
8. Suggestion for further study…………………………… 188
Agrawal, A.M.; Howard M.A.; Neau, S.H. Extruded and spheronized beads containing no microcrystalline cellulose: influences of formulation and process variables. Pharm. Dev. Technol. 2004, 9 (2), 197-217.
Aulton, M.E.; Dyer, A.M.; Khan, K.A. The strength and compaction of millispheres. Drug Dev. Ind. Pharm. 1994, 20 (20), 3069-3104.
Aulton, M.E.; Twitchell, A.M.; Hogan, J.E. Physical properties of HPMC solutions and their role in the film coating process and the quality of the coated product. In Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms; McGinity, J.W., Ed.; Marcel Dekker, Inc.: New York, 1997; 227-266.
Baert, L.; Remon, J.P. Influence of amount of granulation liquid on the drug release rate from pellets made by extrusion spheronisation. Int. J. Pharm. 1993, 95 (1-3), 135-141.
Bashaiwoldu, A.B.; Podczeck, F.; Newton, J.M. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets. Eur. J. Pharm. Sci. 2004, 21 (2-3), 119-129.
Bechgaard, H.; Hegermann-Nielsen, G. Controlled release multiple units and single-unit doses. Drug Dev. Ind. Pharm. 1978, 4 (1), 53-67.
Béchard, S.R.; Leroux, J.C. Coated pelletized dosage form: effect of compaction on drug release. Drug Dev. Ind. Pharm. 1992, 18 (18), 1927-1944.
Beck, M.I.; Tomka, I.; Waysek, E. Physico-chemical characterization of zein as a film coating polymer: A direct comparison with ethyl cellulose. Int. J. Pharm. 1996, 141, (1-2), 137-150.
Beckert, T.E.; Lehmann, K.; Schmidt, P.C. Compression of enteric-coated pellets to disintegrating tablets. Int. J. Pharm. 1996, 143 (1), 13-23.
Bodmeier, R. Tableting of coated pellets. Eur. J. Pharm. Biopharm. 1997, 43 (1), 1-8.
Çelik, M.; Maganti, L. Formulation and compaction of microspheres. Drug Dev. Ind. Pharm. 1994, 20 (20), 3151-3173.
Chen, G.L.; Hao, W.H. Factors affecting zero-order release kinetics of porous gelatin capsules. Drug Dev. Ind. Pharm. 1998, 24 (6), 557-562.
Chopra, R.; Alderborn, G.; Podczeck, F.; Newton, J.M. The influence of pellet shape and surface properties on the drug release from uncoated and coated pellets. Int. J. Pharm. 2002, 239 (1-2), 171-178.
Chuo, W.H.; Tsai, T.R.; Cham, T.M. The investigation of the internal structure and release behavior of tablets compressed by nifedipine-loaded albumins microspheres. Pharmazie. 1998, 53 (2), 104-110.
Conine, J.W.; Hadley, H.R. Preparation of small solid pharmaceutical spheres. Drug Cosmet. Ind. 1970, 106 (1), 38-41.
Dashevsky, A.; Kolter, K.; Bodmeier, R. Compression of pellets coated with various aqueous polymer dispersions. Int. J. Pharm. 2004, 279 (1-2), 19-26.
Davie, M.I. A review of microdialysis sampling for pharmacokinetic applications. Anal. Chim. Acta. 1999, 379 (3), 227-249.
Davies, M.I.; Cooper, J.D.; Desmond, S.S.; Lunte, C.E.; Lunte, S.M. Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 2000, 45 (2-3), 169-188.
Davis, S.S.; Hardy, J.G.; Taylor, M.J.; Whalley, D.R.; Wilson, C.G. A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int. J. Pharm. 1984, 21 (2), 167-177.
Dirnhuber, P.; Green, D.M. Effectiveness of pyridostigminse in reversing the neuromuscular blockade produced by soman. J. Pharm. Pharmacol. 1978, 30 (7), 419-425.
Dunn, M.A.; Hackley, B.E.; Sidell, F.R. Pretreatment for Nerve Agent Exposure, Part I: Medical Aspects of Chemical and Biological Warfare. In The Textbooks of Military Medicine; Sidell, F.R.; Takafuji, E.T.; Franz, D.R., Eds.; Office of the Surgeon General Department of the Army, U.S.A., 1997; 181-196.
Eiermann, B.; Sommers, N.; Winnes, D.; Schumm, F.; Maier, U.; Breyer-Pfaff, U. Renal clearance of pyridostigminse in myasthenic patients and volunteers under the influence of ranitidine and pirenzepine. Xenobiotica. 1993, 23 (11), 1263-1275.
Engineer, S.; Shao, Z.J.; Khagani, N.A. Temperature/humidity sensitivity of sustained-release formulations containing Kollidon?兄R. Drug Dev. Ind. Pharm. 2004, 30 (10), 1089-1094.
Fielden, K.E.; Newton, J.M.; Rowe R.C. A comparison of the extrusion and spheronization behavior of wet powder masses processed by a ram extruder and a cylinder extruder. Int. J. Pharm. 1992, 81 (2-3), 225-233.
Fukumori, Y. Coating of multiparticulates using polymeric dispersion: formulation and process considerations. In Multiparticulate Oral Drug Delivery; Ghebre-Sellassie, I., Ed.; Applied Analytical Industries, Inc.: Wilminsgton, North Carolina, 1994; 79-111.
Gandhi, R.; Kaul, C.L.; Panchagnula, R. Extrusion and spheronization in the development of oral controlled-release dosage forms. Pharm. Sci. Technol. Today 1999, 2 (1), 160-170.
Garrison, K.E.; Pasas, S.A.; Cooper, J.D.; Davies, M.I. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur. J. Pharm. Sci. 2002, 17 (1), 1-12.
Grauer, E.; Alkalai, D.; Kapon, J.; Cohen, G.; Raveh, L. Stress does not enable pyridostigminse to inhibit brain cholinesterase after parenteral adminsistration. Toxicol. Appl. Pharmacol. 2000, 164 (3), 301–304.
Hegazy, N.; Demirel, M.; Yazan, Y. Preparation and in vitro evaluation of pyridostigminse bromide microparticles. Int. J. Pharm. 2002, 242 (1-2), 171-174.
Hjärtstam, J.; Hjertberg, T. Swelling of pellets coated with a composite film containing ethyl cellulose and hydroxypropyl methylcellulose. Int. J. Pharm. 1998, 161 (1), 23-28.
Huang, T.; Yang, L.; Gitzen, J.; Kissinger, P.T.; Vreeke, M.; Heller, A. Detection of basal acetylcholine in rat brain microdialysis. J. Chromatogr. B. 1995, 670 (2), 323-327.
Huang, Y.B.; Tsai, Y.H.; Yang, W.C.; Chang, J.S.; Wu, P.C.; Takayama, K. Once-daily propranolol extended-release tablet dosage form: formulation design and in vitro/in vivo investigation. Eur. J. Pharm. Biopharm. 2004, 58 (3), 607-614.
Johannson, B.; Wikberg, M.; EK, R.; Alderborn, G. Compression behavior and compactability of microcrystalline cellulose pellets in relationship to their pore structure and mechanical properties. Int. J. Pharm. 1995, 117 (1), 57-73.
Jones, D.M.; Percel, P.J. Coating of multiparticulates using molten materials: formulation and process considerations. In Multiparticulate Oral Drug Delivery; Ghebre-Sellassie, I., Ed.; Applied Analytical Industries, Inc.: Wilminsgton, North Carolina, 1994; 113-142.
Jorgensen, E.D.; Bhagwat, D. Development of dissolution tests for oral extended-release products. Pharm. Sci. Technol. Today. 1998, 1 (3), 128-135.
Kang, H.K.; Bullman, T.A.; Macfarlane, G.J.; Gray, G.C. Mortality among US and UK veterans of the Persian Gulf War: a review. Occup. Environ. Med. 2002, 59 (12), 794-799.
Karasulu, H.Y.; Ertan, G. Different geometric shaped hydrogel theophylline tablets: statistical approach for estimating drug release. Farmaco. 2003, 57 (11), 939-945.
Kassa, J. Comparison of efficacy of two oximes (HI-6 and obidoxime) in soman poisoning in rats. Toxicology. 1995, 101 (3), 167-174.
Kearney, A.S. Prodrugs and targeted drug delivery. Adv. Drug Deliv. Rev. 1997, 26 (2-3), 151-172.
Kibbe, A.H. Hydroxypropyl Methylcellulose: Handbook of pharmaceutical excipients; American Pharmaceutical Association: Washington, DC, 2000; 252.
Koplovitz, I.; Stewart, J.R. A comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit. Toxicol. Lett. 1994, 70 (3), 269-279.
Lange, E.C.M. de.; Boer, A.G. de.; Breimer, D.D. Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv. Drug Deliv. Rev. 2000, 45 (2-3), 125-148.
Lee, B.J.; Ryu, S.G.; Cui, J.H. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev. Ind. Pharm. 1999, 25 (4), 493-501.
Leong, C.W.; Newton, J.M.; Basit, A.W.; Podczeck, F.; Cumminsgs, J.H.; Ring, S.G. The formation of colonic digestible films of amylase and ethylcellulose from aqueous dispersion at temperature below 37℃. Eur. J. Pharm. Biopharm. 2002, 54 (3), 291-297.
Liao, H.C. A data envelopment analysis method for optimizing multi-response problem with censored data in the Taguchi method. Computers & Industrial Engineering. 2004, 46 (4), 817–835.
Lin, A.Y.; Muhammad, N.A.; Pope, D.; Augsburger, L.L. A study of the effects of curing and storage conditions on controlled release diphenhydraminse HCl pellets coated with Eudragit® NE30D. Pharm. Dev. Tech. 2003, 8 (3), 277-287.
Lin, K.H.; Lin, S.Y.; Li, M.J. Compression forces and amount of outer coating layer affecting the time-controlled disintegration of the compression-coated tablets prepared by direct compression with micronized ethylcellulose. J. Pharm. Sci. 2001, 90 (12), 2005-2009.
Li, S.; Lin, S.; Daggy, B.P.; Mirchandani, H.L.; Chien, Y.W. Effect of formulation variables on the floating properties of gastric floating drug delivery system. Drug Dev. Ind. Pharm. 2002, 28 (7), 783-793.
Li, S.; Lin, S.; Daggy, B.P.; Mirchandani, H.L.; Chien, Y.W. Effect of HPMC and Carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int. J. Pharm. 2003, 253 (1-2), 13-22.
Lundqvist, Å.E.K.; Podczeck, F.; Newton, J.M. Influence of disintegrant type and proportion on the properties of tablets produced from mixtures of pellets. Int. J. Pharm. 1997, 147 (1), 95-107.
Maejima, T.; McGinity, J.W. Influences of film additives on stabilizing drug release rates from pellets coated with acrylic polymers. Pharm. Dev. Technol. 2001, 6 (2), 211-221.
Maganti, L.; Çelik, M. Compaction studies on pellets: I. Uncoated pellets. Int. J. Pharm. 1993, 95 (1-3), 29-42.
Martin, A.; Bustamante, P.; Chun, A. Physical Pharmacy; Lea and Febiger: London, 1993.
McEvoy, G. Pyridostigminse Bromide. In AHFS Drug Information; Bethesda, MD: American Society of Hospital Pharmacists, Inc., 1992; 630-632.
Mehta, A.M. Processing and equipment considerations for aqueous coatings. In Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms; McGinity, J.W., Ed.; Marcel Dekker, Inc.: New York, 1997; 287-326.
Michaelis, H.C. Determinsation of pyridostigminse plasma concentrations by high-performance liquid chromatography. J. Chromatogr. 1990, 534 (1), 291-294.
Millili, G.P.; Schwartz, J.B. The strength of microcrystalline cellulose pellets: the effect of granulating with water/ethanol mixtures. Drug Dev. Ind. Pharm. 1990, 16 (8), 1411-1426.
Montgomery, D.C. Introduction: Design and Analysis of Experiments; John Wiley & Sons: New York, NY, 1996a; 1-19.
Montgomery, D.C. The 2k Factorial Design: Design and Analysis of Experiments; John Wiley & Sons: New York, NY, 1996b; 290-353.
Montgomery, D.C. Response Surface Methods and Other Approaches to Process Optimization: Design and Analysis of Experiments; John Wiley & Sons: New York, NY, 1996c; 622-641.
Montvale, N.J. Physician''s Desk Reference: 49th ed., Medical Economics Data Production Co., 1995; 1142-1143.
Műller, M. Microdialysis in clinical drug delivery studies. Adv. Drug Deliv. Rev. 2000, 45 (2-3), 255-269.
Olsen, K.W. Fluid bed equipment. In Pharmaceutical Pelletization Technology; Ghebre-Sellassie, I., Ed.; Marcel Dekker, Inc.: New York, 1989; 39-69.
Özyazici, M.; Sevgi, F.; Ertan, G. Sustained-release dosage form of nicardipine hydrochloride: application of factorial design and effect of surfactant on release kinetics. Drug Dev. Ind. Pharm. 1997, 23 (8), 761-770.
Paterakis, P.G.; Korakianiti, E.S.; Dallas, P.P.; Rekkas, D.M. Evaluation and simultaneous optimization of some pellets characteristics using a 33 factorial design and the desirability function. Int. J. Pharm. 2002, 248 (1-2), 51-60.
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release, III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57 (2), 169-172.
Petrali, J.P.; Maxwell, D.M.; Lenz, D.E.; Mills, K.R. Effect of an anticholinesterase compound on the ultrastructure and function of the rat blood–brain barrier: A review and experiment. J. Submicrosc. Cytol. Pathol. 1991, 23 (2), 331–338.
Porter, S.C. Use of Opadry, Sureteric, and Surelease for the aqueous film coating of pharmaceutical oral dosage forms. In Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms; McGinity, J.W., Ed.; Marcel Dekker, Inc.: New York, 1997; 327-372.
Porter, S.C.; Ghebre-Sellassie, I. Key factors in the development of modified-release pellets. In Multiparticulate Oral Drug Delivery; Ghebre-Sellassie, I., Ed.; Applied Analytical Industries, Inc.: Wilminsgton, North Carolina, 1994; 217-284.
Qiu, Y.; Samara, E.E.; Cao, G. In vitro-in vivo correlation in the development of solid oral controlled dosage form. In Handbook of Pharmaceutical Controlled Release Technology; Wise, D.L., Ed.; Marcel Dekker, Inc.: New York, 2000; 527-549.
Qiu, Y.; Cheskin, H.S.; Engh, K.R.; Poska, R.P. Once-a-day controlled release dosage form of divalproex sodum I: formulation design and in vitro/in vivo investigations. J. Pharm. Sci. 2003, 92 (6), 1166–1173.
Ragnarsoson, G.; Johansson, M.O. Coated drug cores in multiple unit preparation-Influence of particle size. Drug Dev. Ind. Pharm. 1988, 14 (15-17), 2285-2297.
Rambali, B.; Baert, L.; Thonè, D.; Massart, D.L. Using experimental design to optimize the process parameters in fluidized bed granulation. Drug Dev. Ind. Pharm. 2001, 27 (1), 47-55.
Ranade, V.V. Drug delivery systems 5B. Oral drug delivery. J. Clin. Pharmacol. 1991, 31 (2), 98-115.
Rao, Y.M.; Veni, J.K.; Jayasagar, G. Formulation and Evaluation of Diclofenac Sodium Using Hydrophilic Matrices. Drug Dev. Ind. Pharm. 2001, 27 (8), 759-766.
Rao, V.M.; Engh, K.; Qiu, Y. Design of pH-independent controlled release matrix tablets for acidic drugs. Int. J. Pharm. 2003, 252 (1-2), 81-86.
Reynold, A.D. A new technique for the production of spherical particles. Mfg. Chem. Aerosol. News. 1970, 41 (1), 40-43.
Reynolds, J.E.F. Martindale. The Extra Pharmacopoeia, London, Pharmaceutical Press, 1993; 1120-1121.
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinder or discs. J. Control. Release. 1987a, 5 (1), 23-36.
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Control. Release. 1987b, 5 (1), 37-42.
Sadeghi, F.; Ford, J.L.; Rajabi-Siahboomi, A. The influence of drug type on the release profiles from Surelease-coated pellets. Int. J. Pharm., 2003, 254 (2), 123-135.
Sano, A.; Kuriki, T.; Handa, T.; Takeuchi, H.; Kawashima, Y. Particle design of tolbutamide in the presence of soluble polymer or surfactant by the spherical crystallization technique: improvement of dissolution rate. J. Pharm. Sci. 1987, 76 (6), 471-474.
Semde´, R.; Amighi, K.; Devleeschouwer, M.J.; Moe¨s, A.J. Studies of pectin HM: Eudragit®RL: Eudragit®NE film-coating formulations intended for colonic drug delivery. Int. J. Pharm., 2000, 197 (1-2), 181-192.
Sharma, P.; Verma, A.; Sidhu, R.K.; Pandey, O.P. Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J. Med. Eng. Technol. 2005, 168 (1), 147–151.
Sidell, F.R. Nerve Agents, Part I: Medical Aspects of Chemical and Biological Warfare. In The Textbooks of Military Medicine; Sidell, F.R.; Takafuji, E.T.; Franz, D.R., Eds.; Office of the Surgeon General Department of the Army, U.S.A., 1997; 129-179.
Sousa, J.J.; Sousa, A.; Moura, M.J.; Podczeck, F.; Newton, J.M. The influence of core materials and film coating on the drug release from coated pellets. Int. J. Pharm. 2002, 233 (1-2), 123-135.
Streubel, A.; Siepmann, J.; Bodmeier, R. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release. Eur. J. Pharm. Sci., 2003, 18 (1), 37-45.
Takka, S.; Ocak, Ö.H.; Acartürk, F. Formulation and investigation of nicardipine HCl-alginate gel beads with factorial design-based studies. Eur. J. Pharm. Sci. 1998, 6 (3), 241-246.
Takka, S.; Sakr, A.; Goldberg, A. Development and validation of an in vitro-in vivo correlation for buspirone hydrochloride extended release tablets. J. Control. Release. 2003, 88 (1), 147-157.
Tamilvanan, S.; Sa, B. In vitro and in vivo evaluation of single-unit commercial conventional tablet and sustained-release capsules compared with multiple-unit polystyrene microparticle dosage forms of Ibuprofen. AAPS Pharm. Sci. Tech. 2006, 7 (3), 72.
Tao, S.L.; Lubeley, M.W.; Desai, T.A. Bioadhesive poly (methyl methacrylate) microdevices for controlled drug delivery. J. Control. Release. 2003, 88 (2), 215–228.
Tarvainen, M.; Peltonen, S.; Mikkonen, H.; Elovaara, M.; Tuunainen, M.; Paronen, P.; Ketolainen, J.; Sutinen, R. Aqueous starch acetate dispersion as a novel coating material for controlled release products. J. Control. Release. 2004, 96 (1), 179-191.
Thoma, K.; Ziegler, I. The pH-independent release of fenoldopam from pellets with insoluble film coats. Eur. J. Pharm. Biopharm. 1998, 46 (2), 291-297.
Tokunaga, N.; Yamazaki, T.; Akiyama, T.; Mori, H. Detection of 3-methoxy-4- hydroxyphenylglycol in rabbit skeletal muscle microdialysate. J. Chromatogr. B 2003a, 798 (1), 163–166.
Tokunaga, N.; Yamazaki, T.; Akiyama, T.; Sano, S.; Mori, H. In vivo monitoring of norepinephrine and its metabolites in skeletal muscle. Neurochem. Int. 2003b, 43 (6), 573–580.
Torrado, S.; Cadorniga, R.; Torrado, J.J. Effect of drug release rate on bioavailability of different aspirin tablets. Int. J. Pharm. 1996, 133 (1-2), 65-70.
Tsai, T.R.; Cham, T.M.; Chen, K.C.; Chen, C.F.; Tsai, T.H. Determinsation of acetylcholine by on-line microdialysis coupled with pre- and post-microbore column enzyme reactors with electrochemical detection. J. Chromatogr. B. 1996, 678 (2), 151-155.
Tsai, T.H. Separation methods used in the determinsation of choline and acetylcholine. J. Chromatogr. B. 2000, 747 (1-2), 111-122.
Tsai, T.H. Assaying protein unbound drugs using microdialysis techniques. J. Chromatogr. B. 2003, 797 (1-2), 161-173.
United States Food and Drug Adminsistration (FDA). Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations, 1997.
United States Food and Drug Adminsistration (FDA). Guidance for industry, dissolution testing of IR solid oral dosage forms, 1997.
United States Food and Drug Adminsistration (FDA). Pyridostigminse Bromide Package Insert, 2002.
United States Food and Drug Adminsistration (FDA). FDA approves PB as pretreatment against nerve gas, 2003.
USP24-NF19 Supplement 2, <1088> In vitro-In vivo evaluation of dosage forms. United State Pharmacopeial Convention, Inc., Rockville, MD, 2000; 2051.
Uppoor, V.R.S. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J. Control. Release. 2001, 72 (1-3), 127-132.
Vasir, J.K.; Tambwekar, K.; Garg, S. Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm. 2003, 255 (1-2), 13-32.
Verbeeck, R.K. Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv. Drug Deliv. Rev. 2000, 45 (2-3), 217-228.
Vervaet, C.; Baert, L.; Remon, J.P. Extrusion-spheronisation a literature review. Int. J. Pharm. 1995, 116 (2), 131-146.
Wanger, J.; Nelson, E. Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug. J. Pharm. Sci. 1964, 53 (11), 1392-1404.
Wheatley, T.A.; Steuernagel, C.R. Latex emulsions for controlled drug delivery. In Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms; McGinity, J.W., Ed.; Marcel Dekker, Inc.: New York, 1997; 1-54.
Windholz, M. Pyridostigminse bromide: The Merck Index; 10th ed., Merck & Co., Inc., Rahway: New Jersey, 1983; 1150.
Yang, S.C.; Zhu, J.B. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev. Ind. Pharm. 2002, 28 (3), 265-274.
Zhang, G.H.; Schwartz, J.B.; Schnaare, R.L. Bead coating. I. Change in release kinetics (and mechanism) due to coating levels. Pharm. Res. 1991, 8 (3), 331-335.
Zhang, M.Y.; Beyer, C.E. Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2006, 40 (3), 492-499.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 壽旭霞(2001)。面對網路交友熱輔導人員應有的準備。學生輔導,74,68-81。
2. 游森期(2001)。E世代青少年網路成癮及網路使用之輔導策略。學生輔導,74,34-43。
3. 楊妙芬(1995)。單親兒童非理性信念、父母管教態度、自我概念與人際關係之研究。屏東師院學報,8,71-110。
4. 郭欣怡、林以正(1998)。網路使用者的心理特性與人際關係。教育資料文摘,42,66-80。
5. 翁嘉銘(2000a)。我愛網路,因為寂寞。張老師月刊,270,115-117。
6. 吳齊殷(1998)。虛擬社區vs.真實生活。科學月刊,29(8),668-674。
7. 吳統雄(2000)。台灣網路使用者系列調查研究:現況、前景、策略、方法。民意研究季刊,214,41-77。
8. 朱錦鳳(1997)。大學生電腦網路的使用及其相關因素的研究。教育與心理研究,20,297-312。
9. 王燦槐、羅惠筠(1998)。我國大學生BBS族的網路人際溝通初探。應用倫理研究通訊,5,5-6。
10. 王振德(民93)。我國特殊教育評鑑及相關研究。教育資料集刊,29,341-357。
11. 吳武典(民71)。美國個別化教育方案實施概況。特殊教育季刊,7,13-14。
12. 李翠玲(民89)。個別化教育計畫納入特教法強制項目後實施現況調查研究。新竹師院學報,13,65-100。
13. 林坤燦、蕭朱亮(民93)。個別化教育計畫實施現況及內容檢核之研究-以高雄市國小啟智班為例。東臺灣特殊教育學報,6,1-32。
14. 林孟宗(民68)。特殊教育師資專業能力分析研究。新竹師專學報,5,125-212。
15. 胡永崇(民91)。啟智班IEP實施狀況及啟智班教師對IEP態度之研究。屏東師院學報,16,135-174。