[1]R.D. Richtmyer, “Dielectric Resonator”, Jpn. J. Appl. phys. 10 (1939) 391-398.
[2]H.J. Lee, I.T. Kim, K.S. Hong, “Dielectric Properties of AB2O6 compounds at microwave frequencies (A=Ca, Mg, Co, Ni, Zn, and B=Nb, Ta)”, Jpn. J. Appl. Phys. 36(10A) (1997) 1318-1320.
[3]H.J. Lee, K.S. Hong, S.J. Kim, I.T. Kim, “Dielectric Properties of MNb2O6 compounds (Where M=Ca, Mn, Co, Ni, or Zn)”, Mater. Res. Bull. 32(7) (1997) 847-855.
[4]C.S. Hsu, C.L. Huang, J.F. Tseng, C.Y. Huang,“ Improved high-Q microwave dielectric resonator using CuO-doped MgNb2O6 ceramics”, Mater. Res. Bull. 38 (2003) 1091-1099.
[5]S.H. Wee, D.W. Kim, S.I. Yoo, “Microwave Dielectric Properties of Low-Fired ZnNb2O6 Ceramics with BiVO4 Addition”, J. Am. Ceram. Soc. 87(5) (2004) 871-875.
[6]Y.C. Zhang, Z.X. Yue, Z.L. Gui, L.T. Li, “Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics”, Ceram. Int. 29 (2003) 555-559.
[7]W.X. Cheng, A.L. Ding, P.S. Qiu, Y.C. Zhang, X.Y. He, X.Sh. Zheng, “Properties of preferential (Zr0.8, Sn0.2)TiO4 thin films prepared by if magnetron sputtering for microwave application“, Micro. Eng. 66 (2003) 648-653.
[8]G.H. Huang, D.G. Zhou, J.M. Xu, X.P. Chen, D.L. Zhang, W.H. Lu, B.Y. Li, “Low-temperature sintering and microwave dielectric properties of (Zr, Sn) TiO4 ceramics”, Mater. Sci. & Eng. B99 (2003) 416-420.
[9]C.L. Huang, C.L. Pan, J.F. Hsu, “Dielectric properties of (1-x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system at microwave frequency”, Mater. Res. Bull. 37 (2002) 2483-2490.
[10]D. Kajfez, P. Guillon, "Dielectric resonators", Norwood, MA, Artech House, Inc. (1986) 547.
[11]吳朗, “電子陶瓷-介電”, 全欣科技圖書. (1994) 268-275.
[12]D.M Pozar, “Microwave Engineering”, J. Wiley & Sons, Inc. (1998) ch2.
[13]B.W. Hakki, P.D. Colemean, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range”, IRE Trans. MTT-8 (1960) 402-410.
[14]W.E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”, IEEE Trans. MTT-18 (1970) 476-485.
[15]Y. Kobayashi, N. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by Dielectric Rod Resonator Method”, IEEE Trans. MTT-33 (1959) 220-228.
[16]翁敏航, 楊茹媛, 洪政源, 李義傑, 洪茂峰, “高介電材料之微波特性量測(一) ”, 奈米通訊, 第11期, 31-39.[17]W.J. Huppmann, G. Petzow, “The Elementary Mechanisms of Liquid Sintering”, Sintering Process, Plenum Press. (1979) 189-202.
[18]H.S. Cannon, F.V. Lenel, “Proceedings of the Plan see Seminar”, Metallwerk Plansee, Reutte. (1953) 106-121.
[19]R. Raj, C.K. Chyung, “Solution Reprecipitation Creep in Glass Ceramics”, Acta Metall. (1980) 159-166.
[20]V.N. Eremenko, Y.V. Naidich, I.A. Lenko, ”Liquid Consolation New York”, (1970) ch4.
[21]K.S. Hwang, Phd. Thesis, “Rensselaer Ploytechnic in Troy”, (1984).
[22]J.W. Cahn, R.B. Heady, J. Am, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles”, J. Am. Ceram. Soc. (1970) 406-409.
[23]W.J. Huppmann, G. Petzow, “Sintering process, Edited by G.C. Kuczynski”, Plenum Press, New York. (1980) 189-202.
[24]W.J. Huppmann, G. Petzow, “The Role of Grain and Phase Boundaries in Liquid Phase Sintering”, Ber. Bunnsenges Phys. 82 (1978) 308-312.
[25]R.M. German, “Liquid Phase Sintering”, Plenum Press, New York. 119 (1985) ch4.
[26]R.B. Heady, J.W. Cahn, “An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles”, Metal. Trans. 1 (1970) 185-189.
[27]R.B. Heady, J.W. Cahn, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles”, J. Am. Ceram. Soc. 7 (1970) 406-409.
[28]陳皇均, “陶瓷材料概論’’, 曉園, 台北市, (1992) 3版.
[29]D.W. Kim, K.H. Ko, K.S. Hong, “Influence of Copper(II) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric properties”, J. Am. Ceram. Soc. 84(6) (2001) 1286-1290.
[30]L.B. Kong, J. Ma, H. Huang, R.F. Zhang, T.S. Zhang, “Zinc niobate derived from mechanochanochemically activated oxides”, J. All. & Comp. 347 (2002) 308-313.
[31]R.C. Pullar, K. Okeneme, N.M. Alford, “Temperature compensated niobate microwave ceramics with the columbite structure, M2+Nb2O6”, J. Eur. Ceram. Soc. 23 (2003) 2479-2483.
[32]A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, “Microwave dielectric loss of titanium dioxide ”, J. Am. Ceram. Soc. 83(1) (2000) 95-100.
[33]Y.C. Zhang, J. Wang, Z.X. Yue, Z.L. Gui, L.T. Li, “Effects of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics ”, Ceram. Int. 30 (2004) 87-91.
[34]D.W. Kim, H.B. Hong, K.S. Hong, “Structural Transition and Microwave Dielectric Properties of ZnNb2O6-TiO2 Sintered at Low Temperatures”, Jpn. J. Appl. Phys. 41(3A) (2002) 1465-1469.
[35]D.W. Kim, K.H. Ko, D.K. Kwon, K.S. Hong, “Origin of Microwave Dielectric Loss in ZnNb2O6-TiO2”, J. Am. Ceram. Soc. 85(5) (2002) 1169-1172.
[36]D.W. Kim, D.Y. Kim, K.S. Hong, “Phase relations and microwave dielectric properties of ZnNb2O6-TiO2”, J. Mater. Res. 15(6) (2000) 1331-1335.
[37]宋月倫, “ZnNb2O6與MgNb2O6微波介電陶瓷製程及其特性之研究”, 崑山科技大學電子系碩士論文, (2005).[38]Y.C. Zhang, Z.X. Yue, Z.L. Gui, L.T. Li, “Microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics”, Mater. Lett. 57 (2003) 4531-4534.
[39]薛朝陽, “Columbite之MNb2O6(M=Ni,Ca)微波介電陶瓷製程及其特性之研究”, 崑山科技大學電子系碩士論文, (2005).[40]S. Ananta, R. Brydson, N.W. Thomas, “Synthesis, formation and characterisation of MgNb2O6 Powder in a columbite-like phase”, J. Eur. Ceram. Soc. 19 (1999) 355-362.
[41]Y.C. Liou, C.Y. Shih, C.H. Yu, “Stoichiometric Pb(Fe1/2Nb1/2)O3 perovskite ceramics produced by reaction-sintering process”, Mater. Lett. 57 (2003) 1977-1981.
[42]J.H. Chen, Y.C. Liou, K.H. Tseng, ”Stoichiometric perovskite lead magnesium niobate ceramics produced by reaction-sintering process”, Jpn. J. Appl. Phys. 42(1A) (2003) 175-181.