跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡銘哲
研究生(外文):TsaiMing-che
論文名稱:合金觸媒對奈米碳管成長特性與場發射性質之影響
論文名稱(外文):Effect of alloy catalyst on the growing characters of CNT and its field emission properties
指導教授:林俊良林俊良引用關係盧陽明盧陽明引用關係
指導教授(外文):Chun-Liang LinYang-Ming Lu
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
論文頁數:68
中文關鍵詞:奈米碳管場發射合金觸媒
外文關鍵詞:alloy catalystcarbon nanotubefield emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:646
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
成長奈米碳管最常使用的金屬觸媒為鐵、鈷、鎳三種元素,然而研究報導指出,含二種元素所組成的合金觸媒對於控制碳管生長的型態、管徑等具有特殊的效果。本論文主要是使用射頻磁控濺鍍系統(RF Magnetron sputtering System)製備金屬觸媒層,金屬觸媒層方面採用鎳金屬掺雜鐵金屬使之成為Ni-Fe 合金觸媒層,並控制Ni-Fe 合金觸媒層的組成比,藉由改變金屬觸媒層的成份,探討不同的金屬觸媒層對成長奈米碳管及場發射特性的影響。濺鍍沉積之合金觸媒層,先利用微波電漿化學氣相沉積(Microwave Plasma-enhance Chemical Vapor Deposition,MPCVD)系統以氫氣電漿蝕刻成奈米尺寸合金金屬球,於500℃溫度,在氫氣氣氛下分解甲烷,產生構築奈米碳管的碳分子以進行奈米碳管成長。最後使用FE-SEM、TEM、場發射量測系統與Raman光譜儀,分析探討奈米碳管的成長型態與特性。
結果顯示︰由SEM 觀察可知,Ni-Fe 合金觸媒所成長之CNT 的成長型態屬於分支狀型。由TEM 觀察可得Ni-Fe 合金觸媒所成長之CNT為中空竹節狀多層奈米碳管。隨著Fe 含量的增加,其場發射特性越好,在Fe 含量39.4wt% 時,得到最低起始電壓為6.8V/μm,最高電流密度為314μA/cm2。
The iron, cobalt and nickel are three kinds of element most used as catalyst to grow CNT. However the research report pointed out that, the alloy catalyst which contains two different kinds of element has special effect on controlling CNT growth and caliber. The present research mainly uses RF Magnetron sputtering system to prepare the metal catalysts. The metal catalyst used in this study is nickel metal doped with different percent of iron metal and annealed to become a Ni-Fe alloy catalyst. By
changing the composition of alloy catalyst, the growth of CNT and the character of field emission were studied. The alloy catalysts were etched by the microwave plasma enhanced chemical vapor deposition system in hydrogen atmosphere to produce nano scale catalysts. Then the mixture of methane and hydrogen were fed into the system to grow CNT at 500℃.
The as-grown CNT samples were characterized by FE-SEM、TEM and Raman Spectroscopy. Its field emission properties were characterized by the I-V Measurement. The result shows that using Ni-Fe alloy catalyst will produce branched shape CNT. These CNT observed by the TEM showing a hollow bamboo structure with multi-walled CNT. Increasing the Fe amount in catalyst, the behavior of field emission is better. When Fe content in alloy catalyst is 39.4wt%, the lowest initial voltage of emission is 6.8V/μm and the highest current density is 314μA/cm2.
中文摘要-------------- i
英文摘要----------- ii
致 謝---------------iiii
目 錄--------------iv
圖目錄--------- vi
第一章、 序論 1
前言------------1
第二章、 文獻回顧與理論基礎 2
2-1 奈米碳管的結構與特性-----------2
2-1-1 單層奈米碳管之結構與電性---------3
2-1-2 多層奈米碳管之結構與電性----3
2-1-3 機械性質-------4
2-1-4 熱性質--------5
2-1-5 儲氫性質-------5
2-2 奈米碳管之合成方法---------- 12
2-2-1 電弧放電法--------- 12
2-2-2 雷射蒸鍍法------- 13
2-2-3 化學氣相沉積法--------- 13
2-3 奈米碳管之成長機制------------ 19
2-4 觸媒種類-------- 23
2-5 場發射理論----- 25
2-6 奈米碳管之應用--- 27
第三章、 實驗方法與步驟 29
3-1 實驗流程------ 30
3-2 實驗材料------- 31
3-3 實驗步驟------ 31
3-3-1 基板之製備------- 31
3-3-2 觸媒層之製備--------- 31
3-3-3 MPCVD 前處理與成長奈米碳管之實驗步驟--- 32
3-4 實驗與分析設備----------- 32
3-4-1 實驗設備----- 32
3-4-2 分析設備----- 33
第四章、 結果與討論 39
4-1 觸媒成份分析------- 39
4-2 不同合金成份觸媒經氫電漿前處理後之影響---- 42
4-3 不同合金成份觸媒成長奈米碳管之影響------ 45
4-4 不同合金成份觸媒成長奈米碳管之場發射特性--54
4-5 不同合金成份觸媒成長奈米碳管之拉曼分析--- 59
第五章、 總結論 62
參考文獻----------63
自傳簡歷------------68
[1] S. Iijima, Nature, 354 (1991) 56.
[2] D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Saroy, J. Vazquez, and R. Beyers. Nature, 363 (1993) 605.
[3] T.W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
[4] H.W. Kroto, J.R. Heath, S.C.O. Brien et al. Nature 318 (1985) 162.
[5] B.I. Yakobson, R.E. Smalley, American Scientist 85 (1997) 324.
[6] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33 (1995) 883.
[7] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes, Academic Press, San Diego, 1996.
[8] N. Hamada, S Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
[9] R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon , Marcel Dekker, New York (1978) 83.
[10] Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263 (1994) 1744.
[11] S. Amelinckx, D. Bernaerts, X.B. Zhang, G.V. Tendeloo, J.V. Landuyt, Science 267 (1995) 1334.
[12] H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
[13] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
[14] G. Overney, W. Zhong, D. Tomanek, Physica D 27 (1993) 93.
[15] D.H. Robertson, D.W. Brener, J.W. Minmire, Physical Review B 4 (1992) 592.
[16] B.T. Kelly, Physics of Graphite Applied Science, London (1992).
[17] J. Tersoff, Physical Review B 46 (1992) 546.
[18] M.P. Campbell, C.J. Brabec, J. Bernholc, Comput. Mater. Sci. 8 (1997) 341.
[19] B.I. Yakobson, Appl. Phys. Lett. 72 (1998) 918.
[20] P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 81 (1998) 5346.
[21] M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. B, 57 (1998) R4277.
[22] M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. Lett. 81 (1998) 4656.
[23] P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science, 283 (1999) 1513.
[24] M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry 199 (1998) 1.
[25] R.S. Ruoff, D.C. Lorents, Carbon 33 (1995) 925.
[26] S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613.
[27] M.A. Osman, D. Srivastava, Nanotechnology 12 (2001) 21.
[28] M. J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Appl. Phys. Lett. 80 (2002) 2767.
[29] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74 (2002) 339.
[30] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, Nature 386 (1997) 377.
[31] Y. Ye, C.C. Ahn, C. Witham, Appl. Phys. Lett. 74 (1999) 2307.
[32] Y. Chen, D.T. Shaw, X.D. Bai, Appl. Phys. Lett. 78 (2001) 2128.
[33] S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
[34] T.W. Ebbeseen, P.M. Ajayan, Nature 358 (1992) 220.
[35] T.W. Ebbeseen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem.Phys. Lett. 209 (1993) 83.
[36] S. Seraphin, D. Zhou, J. Jiao, C. Withers, R. Loufty, Carbon 31 (1993) 685.
[37] D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.
[38] T.Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J.Phys. Chem. 99 (1995) 10694.
[39] A.Thess, R. Lee, P. Nikolaev, Science 273 (1996) 483.
[40] T.Guo, P. Nikolaev, A. Thess, Chem. Phys. Lett. 243 (1995) 49.
[41] A.Thess, R.Lee, P.Nikolaev, H.Dai, P.Petit, J.Robert, C.Xu, Y.H.Lee, S.G. Kim, A. G.Rinzler, D.T.Colbert, G.E.Scuseia, D.Tomanek, J.E.Fischer, and R.E.Smalley,Science, 273(1996), 483.
[42] A.W.H. Mau, L. Dai, J. American Chemical Society 121 (1999) 10832.
[43] S. Huang, L. Dai, A.W.H. Mau, J. Physical Chemistry B 103 (1999) 4223.
[44] D.R. Lide, H.P.R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
[45] P.E. Nolan, M.J. Schabel, D.C. Lynch, Carbon 33 (1995) 79.
[46] 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
[47] Y.H. Wang, J. Lin, C.H. A. Huan, G.S. Chen, Appl. Phys. Lett. 79 (2001) 680.
[48] H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J.Thong, Applied Surface Science 181 (2001) 248.
[49] 寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
[50] C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
[51] C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
[52] Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, Diamond and Related Materials 11 (2002) 59.
[53] Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, I.T. Han, W.B. Choi, N.S. Lee, J.M.Kim, Synthetic Metals 108 (2000) 159.
[54] Q. Liang, Q. Li, D.L. Chen, D.R. Zhou, B.L. Zhang, Z.L. Yu, Chemical Journal of Chinese Universities-Chinese 21 (2000) 623.
[55] R.T.K. Baker, M.A. Braber, P.S. Harries, F.S. Feates, R.J. Waite, J. Catalysis 26 (1972) 51.
[56] A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32 (1976) 335.
[57] M. Endo, H.W. Kroto, J. Phys. Chem. 96 (1992) 6941.
[58] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 304 (1999) 277.
[59] A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
[60] R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon, Marcel Dekker, New York (1978) 83.
[61] R.T.K. Baker, J.J. Chludzinski, J. Catalysis 64 (1980) 464.
[62] A. Oberlin, M. Endo, T. Koyama, Jap. J. Appl. Phys., 16 (1997) 1519.
[63] Y.T. Jang, C.H. Choi, “Fabrication and characteristics of field emitter using carbon nanotubes directly grown by thermal chemical vapor deposition”, Thin Solid Films, 436 (2003) 298-302.
[64] Y. Tzeng, Y. Chen, C. Liu, “Fabrication and characterization of non-planar high-current –density carbon-nanotube coated cold
cathodes”, Diamond and Related Materials, 12 (2003) 442-445.
[65] J. M.Bonard, H. Kind, T. Stockli, “Field emission from carbon nanotubes: the first five years”, Solid-State Electronics, 45 (2001)
893-914.
[66] Y. Cheng, O. Zhou, “Electron Field emission from carbon nanotube” C.R.Physique, 4 (2003) 1021-1033.
[67] 陳守得, 以微波電漿化學氣相沉積法低溫合成奈米碳管及其應用於微熱傳之冷卻, 國立成功大學航空太空工程學系暨研究所,2004.
[68] L.Schlapbach, Appl.Phys.Lett. 73(1988)2113.
[69] 成會明編著,奈米碳管,五南圖書出版股份有限公司,民國94 年.
[70] J.Cermake, H.Mehrer, Acta Metallurgical, Materialia 42 (4) (1994) 1345.
[71] P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, Phys. Rev. B 51 (1995) 10048.
[72] Y. Ando, X. Zhao, H. Shimoyama, Carbon 39 (2001) 569.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊