跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭文智
研究生(外文):KuoWen-Chih
論文名稱:使用混合燃料反置擴散火焰合成奈米碳結構
論文名稱(外文):A Study on Carbon Nano-Structures in Inverse Diffusion Flames of Mixed Fuels
指導教授:侯順雄侯順雄引用關係
指導教授(外文):Shuhn Shyurng Hou
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
論文頁數:97
中文關鍵詞:反置擴散火焰奈米碳結構奈米碳管奈米碳球火焰合成
外文關鍵詞:Carbon Nano-StructuresFlame SynthesisInverse Diffusion FlameCarbon NanocapsuleCarbon Nanotubes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於利用反置同軸噴流擴散火焰,探討混合燃料之比例、沉積位置以及金屬觸媒催化方式等參數對燃燒合成奈米碳結構之成長機制及其結構的影響。研究中首先針對內管/外環流速比、氧氣濃度和混合燃料比例等參數對火焰臨界特性的影響。結果顯示,提高流速比會減弱富碳環境,抑制黃焰生成,使其黃焰生成之臨界甲烷濃度增高;然而增加氧氣濃度、甲烷濃度及乙烯濃度,則會增加火焰高度及黃焰分布範圍,使得黃焰生成之臨界濃度降低。
其次,使用鎳格網當作沉積基板來合成奈米碳結構,以掃描式及穿透式電子顯微鏡(SEM、TEM和HR-TEM)觀察不同實驗條件下所生成之奈米碳結構的形態。基板上沉積之奈米碳結構以奈米碳管與奈米碳球為主。以奈米碳管的生成情形來看,甲烷濃度10%的生成範圍及數量都優於甲烷濃度5%,而奈米碳球大部分都生成於甲烷濃度30%下沾附硝酸鎳之鎳格網。此外,並發現在遠離火焰處不易觀察到奈米碳結構,而火焰面或者貼近火焰面處則是奈米碳結構生成最多的地方。利用HR-TEM觀察奈米碳管發現其為多壁奈米碳管,且所生成之奈米碳管有直管及類竹兩類,其頂端及轉折處均有粒狀物。而奈米碳球的內部有粒狀物,可能為填充金屬奈米碳球。在鎳格網上沾附硝酸鎳溶液後,其合成奈米碳結構的數量較未沾附硝酸鎳之鎳格網多且範圍更廣、長度更長,顯示沾附硝酸鎳溶液的鎳格網有助於奈米碳結構生成。
The formation and growth of carbon nano-structures including carbon nanotubes (CNTs) and carbon nanocapsules in inverse co-flowing diffusion flames of mixed fuel were experimentally studied. The influences of volumetric methane concentrations in ethylene/nitrogen mixture from the outer jet, sampling position and substrate (uncoated or coated with Ni(NO3)2-36.4% by weight) upon the yield of carbon nano-structures were particularly emphasized. The flame appearance, flame structure, and flame stability under the influences of inner/outer velocity ratios, volumetric oxygen concentrations in nitrogen of the inner jet and methane concentrations in ethylene/nitrogen mixture of the outer jet were firstly studied using image processing techniques. The results showed that increasing the injection velocity of oxygen/nitrogen mixture, the sooty zone becomes narrower, leading to an increase in the critical methane concentration require for the occurrence of yellow flame (sooty zone). However, raising oxygen concentration of inner jet or fuel (methane or ethylene) concentration of outer jet resulted in an increase in flame height and a wider range of sooty zone, and in turn a decrease in the critical fuel concentration required for the occurrence of yellow flame.
Thereafter, we employed a sampling Ni grid as the catalytic metal substrate for the carbon nano-structures growth. The sampler was mounted on a two-dimensional micro-positioner with the plane normal to the burner axis. The sampling time of the substrate inside the flame was kept at 120 sec. The SEM and TEM images showed that carbon nano-structures depositted on the substrates were mainly CNTs and carbon nanocapsule. Curved and entangled tubular multi-walled CNTs (MWCNTs) were harvested, which had both typical straight tubular and bamboo-like structures. Besides curved CNTs, carbon nanocapsules were also synthesized, inside which metal particles were encapsulated. It is of interest to note that only MWCNTs were generated when the mixture of 5% methane/5% ethylene/90% nitrogen and the mixture of 10% methane/5% ethylene/85% nitrogen were separately used as the fuel. Both the growth range and yield of CNTs of the former are smaller than those of the latter. However, carbon nanocapsules synthesized on Ni(NO3)2-coated substrates were found when the methane concentration of outer fuel jet was equal to 30% (i.e. 30% methane/5% ethylene/65% nitrogen). Furthermore, for the same sampling approach, the sampling positions on or near the flame front had a greater carbon nano-structures harvest than those far from the flame front. Using Ni(NO3)2-coated substrates had advantages over uncoated Ni(NO3)2 substrates, which can increase the range, quantity and length of carbon nano-structures.
總目錄 I
圖目錄 III
符號說明 VII
一、前言 1
1-1 奈米碳結構 1
1-2 文獻回顧 5
1-2-1 預混噴流火焰 6
1-2-2 標準同軸擴散火焰 9
1-2-3 反置同軸擴散火焰 13
1-3 研究動機 15
1-4 研究目的 17
二、實驗設備 19
2-1 三環同軸噴流實驗 19
2-1-1 燃燒器系統 19
2-1-2 氣體供應系統 20
2-1-3 影像擷取系統 21
2-1-4 溫度量測系統 21
2-1-5 金屬觸媒基板沉積物取樣系統 22
2-2 奈米檢測設備 23
2-2-1 高解析場發射掃描式電子顯微鏡 24
2-2-2 高解析度穿透式電子顯微鏡 25
三、實驗方法與步驟 27
3-1 火焰特性與火焰型態觀測實驗 27
3-2 沉積物取樣實驗與奈米設備檢測 29
四、結果與討論 31
4-1 穩焰特性分析 31
4-2 碳顆粒生成範圍 36
4-3 奈米碳結構生成分析 37
五、結論 50
5-1 穩焰特性與碳顆粒生成範圍分析 50
5-2 火焰合成奈米碳結構 51
六、參考文獻 53
七、圖表 58
1.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F.,and Smally, R.E. “C60:Buckmeinster Fullerene,” Nature, Vol. 318, pp. 162-164, 1985.
2.Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
3.黃贛麟,“奈米碳簇材料--中空奈米碳球性質簡介”,化工資訊,第16卷第6期,12 ~ 15頁,民國91年6月。
4.黃贛麟,張兆綱,“奈米碳簇材料--填充金屬奈米碳球簡介”,化工資訊,第16卷第6期,16 ~ 18頁,民國91年6月。
5.Ebbesen, T.W. and Ajayan, P.M., “Large-Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358, pp. 220-222,1992.
6.Dillon, A.C., Parilla, P.A., Alleman, J.L., Perkins J.D. and Heben, M.J., “Controlling Single-Wall Nanotube Diameters with Variation in Laser Pulse Power,” Chem. Phys. Lett., Vol. 316, pp. 13-18, 2000.
7.Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y. and Wang, G., “Direct Growth of Aligned Open Carbon Banotubes by Chemical Vapor Deposition,” Chem. Phys. Lett., Vol. 299, pp. 97-102, 1999.
8.Matveev, A.T., Golberg, D., Novikov, V.P., Klimkovich, L.L., and Bando, Y., “Synthesis of Carbon Nanotubes below Room Temperature,” Carbon, Vol. 39, pp. 155-158, 2001.
9.Laplaze, D., Bernier, P., Maser, W.K., Flamant, G., Guillard, T.and Loiseau, A., “Carbon Nanotubes: the Solar Approach,” Carbon, Vol. 36, pp. 685-688, 1998.
10.Richter, H.A., Labrocca, J.W., Grieco, J., Taghizadeh, K., Lafleur, A. L. and Howard, J.B., “Generation of Higher Fullerenes in Flames,” J. Phys. Chem. B, Vol.101, pp. 1556-1560, 1997.
11.Fristrom, R.M., and Westenberg, A.A., Flame Structure, McGraw-Hill Co, 1965.
12.Howard, J.B., Chowdhury, K.D. and Vander Sande, J.B., “Carbon Shellsin Flames,” Nature, Vol. 370, pp. 603-603, 1994.
13.Chowdhury, K.D., Howard, J.B. and Vander Sande, J.B.,“Fullerenic Nanostructures in Flames,” J. Mater. Res,Vol. 11 pp. 341-347, 1996.
14.Howard, J.B., Chowdhury, K.D. and Vander Sande, J.B.,“Production of Fullerenic Nanostructures in Flames,”US patent 5985232, 1999.
15.Grieco, W.J., PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts Institute of Technology, USA, 1999.
16.Goel, A., PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2002.
17.Goel, A., Hebgen, P., Vander Sande, J.B. and Howard, J.B., “Combustion Synthesis of Fullerenes and Fullerenic Nanostructures,” Carbon, Vol. 40, pp. 177-182, 2002.
18.Diener, M.D., Nichelson, N. and Alford, J.M.,
“Synthesis of Single-Walled Carbon Nanotubes in
Flames,” J. Phys. Chem. B, Vol. 104, pp. 9615-9620, 2000.
19.Vander Wal, R.L., “Fe-Catalyzed Single-Walled Carbon Nanotube Synthesis within a Flame Environment,”Combust. Flame, Vol. 130, pp. 37-47, 2002.
20.Vander Wal, R.L. and Ticich, T.M., “Flame and Furnace Synthesis of Single-Walled and Multi-Walled Carbontubes and Nanofibers,” J. Phys. Chem. B, Vol. 105, pp. 10249-10256, 2001.
21.Vander Wal, R.L. and Ticich, T.M., “Comparative Flame and Furnace Synthesis of Single-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 336, pp. 24-32,2001.
22.Vander Wal, R.L. and Hall, L.J., “Ferrocene as a Precursor Reagent for Metal-Catalyzed Carbon Nanotubes:Competing Effects,” Combust. Flame, Vol. 130, pp. 27-36, 2002.
23.Vander Wal, R.L., “Flame Synthesis of Ni-catalyzed Nanofibers,” Carbon, Vol. 40, pp. 2101-2107, 2002.
24.Vander Wal, R.L., Berger, G.M. and Hall, L.J., “Single-Walled Carbon Nanotube Synthesis via a Multi-stage Flame Configuration,” J. Phys. Chem. B, Vol. 106, pp. 3564-3567, 2002.
25.Vander Wal, R.L., Hall, L.J. and Berger, G.M.,“Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst,” J. Phys. Chem. B, Vol. 106, pp. 13122-13132, 2002.
26.Vander Wal, R.L., Hall, L.J. and Berger,G.M., “The Chemistry of Premixed Flame Synthesis of Carbon Nanotubes Using Supported Catalysts,” Proc. Combust.Inst. 29, pp. 1079-1085, 2002.
27.Height, M.J, Howard, J.B. and Tester, J.W., “Flame Synthesis of Single Salled Carbon Nanotubes,” Carbon, Vol. 42, pp. 2295-2307, 2004.
28.Height, M.J, Howard, J.B. and Tester, J.W., “Flame Synthesis of Single Walled Carbon Nanotubes,” Proc. Combust. Inst. 30, pp. 2537-2543, 2005.
29.Yuan, L., Saito, K., Pan, C.F., Williams, A. and Gordon, A.S., “Nanotubes from Methane Flames,” Chem. Phys. Lett., Vol. 340, pp. 237-241, 2001.
30.Sinnott, S.B., Andrews., R., Qian, D., Rao, A., Mao,Z., Dickey, E.C. and Derbyshire, F., “Model of Carbon Nanotube Growth Through Chemical Vapor Deposition,”Chem. Phys. Lett., Vol. 315, pp. 25-30, 1999.
31.Yuan, L., Saito, K., Hu, W. and Chen, Z., “Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 346, pp. 23-28,2001.
32.Arana, C.P., Puri, I.K. and Sen, S., “Catalyst Influence on the Flame Synthesis of Aligned Carbon Nanotubes and Nanofibers,” Proc. Combust. Inst. 30, pp.2553-2560, 2005.
33.Liu, T.C. and Li, Y.Y., “Synthesis of Carbon
Nanocapsules and Carbon Nanotubes by an Acetylene Flame Method,” Carbon , Vol. 44, pp. 2045-2050, 2006.
34.Lee, G.W., Jurng, J. and Hwang, J., “Synthesis of Carbon Nanotubes on a Catalytic Metal Substrate by Using an Ethylene Inverse Diffusion Flame,” Carbon, Vol. 42,pp. 667-691, 2004.
35.Xu, F., Liu, X. and Tse, S.D., “Synthesis of Carbon Nanotubes on Metal Alloy Substrates with Voltage Bias in Methane Inverse Diffusion Flames,” Carbon, Vol. 44, pp.570-577, 2006.
36.Yuan, L., Saito, K. and Li, T., “Growth Mechanism of Carbon Nanotubes in Methane Diffusion Flames,” Carbon,Vol. 41, pp. 1889-1896, 2003.
37.Kang, K.T., Hwang, J.Y. and Chung, S.H., “Soot Zone Structure and Sooting Limit in Diffusion Flames:Comparison of Counterflow and Co-Flow Flames,” Combust.Flame, Vol. 109 pp. 266-281, 1997.
38.Ko, Y.C., Hou, S.S., and Lin, T.H., “Laminar Diffusion Flames in a Multi-Port Burner,” Combustion Science and Technology, Vol. 177 pp. 1463-1484, 2005.
39.Lee, W.B., Sun, J.H., Hou, S.S., Chun, U.L. and Lin,T.H., "The Influence of Air Premixedness on Combustion Characteristics of Jet Flames," in Transport Phenomena in Combustion, Edited by Chan, S. H., Taylor & Francis, pp. 435-444, 1996.
40.柯永章,“多噴口燃燒器之氣態火焰分析”,國立成功大學機械工程學系博士論文,民國九十三年六月。
41.南台科技大學高職教師進修網站,
http://elearning.stut.edu.tw/。
42.成功大學微奈米科技研究中心,
http://140.116.176.21/www/welcom e.htm。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top