1.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F.,and Smally, R.E. “C60:Buckmeinster Fullerene,” Nature, Vol. 318, pp. 162-164, 1985.
2.Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
3.黃贛麟,“奈米碳簇材料--中空奈米碳球性質簡介”,化工資訊,第16卷第6期,12 ~ 15頁,民國91年6月。4.黃贛麟,張兆綱,“奈米碳簇材料--填充金屬奈米碳球簡介”,化工資訊,第16卷第6期,16 ~ 18頁,民國91年6月。5.Ebbesen, T.W. and Ajayan, P.M., “Large-Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358, pp. 220-222,1992.
6.Dillon, A.C., Parilla, P.A., Alleman, J.L., Perkins J.D. and Heben, M.J., “Controlling Single-Wall Nanotube Diameters with Variation in Laser Pulse Power,” Chem. Phys. Lett., Vol. 316, pp. 13-18, 2000.
7.Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y. and Wang, G., “Direct Growth of Aligned Open Carbon Banotubes by Chemical Vapor Deposition,” Chem. Phys. Lett., Vol. 299, pp. 97-102, 1999.
8.Matveev, A.T., Golberg, D., Novikov, V.P., Klimkovich, L.L., and Bando, Y., “Synthesis of Carbon Nanotubes below Room Temperature,” Carbon, Vol. 39, pp. 155-158, 2001.
9.Laplaze, D., Bernier, P., Maser, W.K., Flamant, G., Guillard, T.and Loiseau, A., “Carbon Nanotubes: the Solar Approach,” Carbon, Vol. 36, pp. 685-688, 1998.
10.Richter, H.A., Labrocca, J.W., Grieco, J., Taghizadeh, K., Lafleur, A. L. and Howard, J.B., “Generation of Higher Fullerenes in Flames,” J. Phys. Chem. B, Vol.101, pp. 1556-1560, 1997.
11.Fristrom, R.M., and Westenberg, A.A., Flame Structure, McGraw-Hill Co, 1965.
12.Howard, J.B., Chowdhury, K.D. and Vander Sande, J.B., “Carbon Shellsin Flames,” Nature, Vol. 370, pp. 603-603, 1994.
13.Chowdhury, K.D., Howard, J.B. and Vander Sande, J.B.,“Fullerenic Nanostructures in Flames,” J. Mater. Res,Vol. 11 pp. 341-347, 1996.
14.Howard, J.B., Chowdhury, K.D. and Vander Sande, J.B.,“Production of Fullerenic Nanostructures in Flames,”US patent 5985232, 1999.
15.Grieco, W.J., PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts Institute of Technology, USA, 1999.
16.Goel, A., PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2002.
17.Goel, A., Hebgen, P., Vander Sande, J.B. and Howard, J.B., “Combustion Synthesis of Fullerenes and Fullerenic Nanostructures,” Carbon, Vol. 40, pp. 177-182, 2002.
18.Diener, M.D., Nichelson, N. and Alford, J.M.,
“Synthesis of Single-Walled Carbon Nanotubes in
Flames,” J. Phys. Chem. B, Vol. 104, pp. 9615-9620, 2000.
19.Vander Wal, R.L., “Fe-Catalyzed Single-Walled Carbon Nanotube Synthesis within a Flame Environment,”Combust. Flame, Vol. 130, pp. 37-47, 2002.
20.Vander Wal, R.L. and Ticich, T.M., “Flame and Furnace Synthesis of Single-Walled and Multi-Walled Carbontubes and Nanofibers,” J. Phys. Chem. B, Vol. 105, pp. 10249-10256, 2001.
21.Vander Wal, R.L. and Ticich, T.M., “Comparative Flame and Furnace Synthesis of Single-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 336, pp. 24-32,2001.
22.Vander Wal, R.L. and Hall, L.J., “Ferrocene as a Precursor Reagent for Metal-Catalyzed Carbon Nanotubes:Competing Effects,” Combust. Flame, Vol. 130, pp. 27-36, 2002.
23.Vander Wal, R.L., “Flame Synthesis of Ni-catalyzed Nanofibers,” Carbon, Vol. 40, pp. 2101-2107, 2002.
24.Vander Wal, R.L., Berger, G.M. and Hall, L.J., “Single-Walled Carbon Nanotube Synthesis via a Multi-stage Flame Configuration,” J. Phys. Chem. B, Vol. 106, pp. 3564-3567, 2002.
25.Vander Wal, R.L., Hall, L.J. and Berger, G.M.,“Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst,” J. Phys. Chem. B, Vol. 106, pp. 13122-13132, 2002.
26.Vander Wal, R.L., Hall, L.J. and Berger,G.M., “The Chemistry of Premixed Flame Synthesis of Carbon Nanotubes Using Supported Catalysts,” Proc. Combust.Inst. 29, pp. 1079-1085, 2002.
27.Height, M.J, Howard, J.B. and Tester, J.W., “Flame Synthesis of Single Salled Carbon Nanotubes,” Carbon, Vol. 42, pp. 2295-2307, 2004.
28.Height, M.J, Howard, J.B. and Tester, J.W., “Flame Synthesis of Single Walled Carbon Nanotubes,” Proc. Combust. Inst. 30, pp. 2537-2543, 2005.
29.Yuan, L., Saito, K., Pan, C.F., Williams, A. and Gordon, A.S., “Nanotubes from Methane Flames,” Chem. Phys. Lett., Vol. 340, pp. 237-241, 2001.
30.Sinnott, S.B., Andrews., R., Qian, D., Rao, A., Mao,Z., Dickey, E.C. and Derbyshire, F., “Model of Carbon Nanotube Growth Through Chemical Vapor Deposition,”Chem. Phys. Lett., Vol. 315, pp. 25-30, 1999.
31.Yuan, L., Saito, K., Hu, W. and Chen, Z., “Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 346, pp. 23-28,2001.
32.Arana, C.P., Puri, I.K. and Sen, S., “Catalyst Influence on the Flame Synthesis of Aligned Carbon Nanotubes and Nanofibers,” Proc. Combust. Inst. 30, pp.2553-2560, 2005.
33.Liu, T.C. and Li, Y.Y., “Synthesis of Carbon
Nanocapsules and Carbon Nanotubes by an Acetylene Flame Method,” Carbon , Vol. 44, pp. 2045-2050, 2006.
34.Lee, G.W., Jurng, J. and Hwang, J., “Synthesis of Carbon Nanotubes on a Catalytic Metal Substrate by Using an Ethylene Inverse Diffusion Flame,” Carbon, Vol. 42,pp. 667-691, 2004.
35.Xu, F., Liu, X. and Tse, S.D., “Synthesis of Carbon Nanotubes on Metal Alloy Substrates with Voltage Bias in Methane Inverse Diffusion Flames,” Carbon, Vol. 44, pp.570-577, 2006.
36.Yuan, L., Saito, K. and Li, T., “Growth Mechanism of Carbon Nanotubes in Methane Diffusion Flames,” Carbon,Vol. 41, pp. 1889-1896, 2003.
37.Kang, K.T., Hwang, J.Y. and Chung, S.H., “Soot Zone Structure and Sooting Limit in Diffusion Flames:Comparison of Counterflow and Co-Flow Flames,” Combust.Flame, Vol. 109 pp. 266-281, 1997.
38.Ko, Y.C., Hou, S.S., and Lin, T.H., “Laminar Diffusion Flames in a Multi-Port Burner,” Combustion Science and Technology, Vol. 177 pp. 1463-1484, 2005.
39.Lee, W.B., Sun, J.H., Hou, S.S., Chun, U.L. and Lin,T.H., "The Influence of Air Premixedness on Combustion Characteristics of Jet Flames," in Transport Phenomena in Combustion, Edited by Chan, S. H., Taylor & Francis, pp. 435-444, 1996.
40.柯永章,“多噴口燃燒器之氣態火焰分析”,國立成功大學機械工程學系博士論文,民國九十三年六月。41.南台科技大學高職教師進修網站,
http://elearning.stut.edu.tw/。
42.成功大學微奈米科技研究中心,
http://140.116.176.21/www/welcom e.htm。