跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠廷
研究生(外文):Kuan-Ting Chen
論文名稱:常壓微波電漿裂解與蒸氣重組甲烷產氫之研究
論文名稱(外文):Plasmalysis and Steam Reforming of Methane for Producing Hydrogen Using an Atmospheric-Pressure MW Plasma Torch
指導教授:蔡政賢蔡政賢引用關係謝連德謝連德引用關係
指導教授(外文):Cheng-Hsien TsaiLien-Te Hsieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:128
中文關鍵詞:微波電漿甲烷電漿裂解蒸氣重組氫氣碳黑光學發射光譜
外文關鍵詞:Microwave DischargeMethanePyrolysisSteam ReformingHydrogenCarbon blackOptical Emission Spectra
相關次數:
  • 被引用被引用:7
  • 點閱點閱:949
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
碳氫化合物重組產生氫氣之主要方法為使用高溫觸媒。近年來,為降低產氫之能量消耗率,電漿重組技術日益受到重視。因此,本研究利用常壓微波電漿系統,進行甲烷 (CH4) 裂解與蒸汽重組產製富氫燃料。實驗探討輸入功率、CH4進流濃度、總進流流量與水/甲烷之進料比例 (H2O/CH4),分別對CH4轉化率、H2選擇率,以及能量消耗率之影響。並以氣相層析儀分析氫氣、傅立葉轉換紅外線光譜儀分析氣相副產物。並經由X光繞射分析儀、化學分析電子光譜儀、掃描式與穿透式電子顯微鏡,鑑定固態產物的特徵。
實驗結果顯示,提高輸入功率或降低總進流流量,可提升產物中之H2濃度;但較高的CH4進流濃度與總進流流量下,產氫能量消耗率較低。裂解反應中,在1400 W, [CH4]in = 5%, 12 slm下,可獲得較高之CH4轉化率 (87.1%)與H2選擇率 (79.8%),但就甲烷產氫之能量消耗率而言,則在800 W, [CH4]in = 20%, 12 slm下可獲得較佳之效率 (6.7 eV/molecule-H2)。另外,蒸氣重組反應中,於H2O/CH4 = 1, 1000 W, [CH4]in = 5%, 12 slm下,可得到較裂解為高之CH4轉化率 (91.6%)以及H2選擇率 (93.8%)。
在氣態副產物方面,CH4裂解主要以C2H2, HCN為次要產物、C2H4為微量產物;CH4蒸汽重組中,則以CO, C2H2為次要產物,微量副產物為C2H4, HCN, CO2。在固態副產物方面,無論是裂解或蒸汽重組,均以碳黑為惟一產物,其結構屬於石墨-菱方晶。而高功率下裂解所生成之碳黑幾乎為純碳,為粒徑約50 nm之橢圓形顆粒,經過測試後,發現可應用於燃料電池,做為碳載白金。最後,光學發射光譜顯示,活性的N2物種於甲烷電漿反應中,扮演能量傳遞的主要角色之一,而活性物種NH, CH, OH及N2之光譜強度與CH4轉化率成正比。
Hydrogen (H2) is mainly produced by the cracking of hydrocarbons under high temperature. Recently, production of H2 using the plasma-reforming approach has caused a great attention because of its lower energy consumption. In this study, pyrolysis and steam reforming of methane (CH4) to hydrogen-rich fuel by using an atmospheric-pressure microwave plasma torch were carried out. The effects of operational parameters, including applied power, inlet CH4 concentration, total flow rate, and inlet H2O/CH4 molar ratio on the conversion of CH4, selectivity of H2, and energy consumption were evaluated. A gas chromatograph and a Fourier transform infrared spectrometer were used to analyze H2 and the other gaseous byproducts, respectively. In addition, X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope and transmission electron microscope were used to identify the solid product.
Experimental results showed that the concentration of H2 in effluents increased with a higher applied power or a lower total flow rate. However, lower energy consumption for producing H2 was achieved at a higher inlet CH4 concentration or total flow rate. After the pyrolysis of CH4, the conversion of CH4 and the selectivity of H2 reached 87.1% and 79.8%, respectively, at 1400 W, [CH4]in = 5%, and total flow rate of 12 slm, while a lowest energy consumption of 6.7 eV/molecule-H2 was performed at 800 W, [CH4]in = 20% and 12 slm. As for the steam reforming of CH4, the higher conversion of CH4 and the selectivity of H2 were found, reaching 91.6% and 93.8%, respectively, at H2O/CH4 = 1, 1000W, [CH4]in = 5% and 12 slm.
The major byproducts were C2H2 and HCN with trace of C2H4 for the plasmalysis of CH4. As for the steaming reforming of CH4, the main byproducts were CO and C2H2 with trace of C2H4, HCN and CO2. Carbon black, however, was the only solid byproduct in either pyrolysis or steam reforming reaction. Moreover, the structure of carbon black was graphite-rhombohedral with a particle size of about 50 nm, as well as it was almost pure carbon when formed at a higher applied power. The carbon black could be used as the support of platinum for the application of fuel cell. Finally, optical emission spectra revealed that the active N2 played an important role in energy translation. In addition, the intensities of active NH, CH, OH and N2 are directly proportional to the conversion of CH4.
中文摘要 I
英文摘要 II
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻回顧 2
2-1 甲烷與氫氣 2
2-1-1 甲烷的特性與用途 2
2-1-2 氫氣的特性與氫能源 4
2-2 電漿 5
2-2-1 電漿原理 5
2-2-2 電漿的種類 9
2-2-3 微波電漿的生成 10
2-3 電漿之甲烷產氫技術 13
2-3-1 電漿裂解甲烷產氫 13
2-3-2 電漿蒸汽重組甲烷產氫 16
2-3-3 電漿部分氧化甲烷產氫 18
2-3-4 電漿自熱重組法產氫 19
第三章 實驗設備及方法 21
3-1 實驗設備 21
3-1-1 氣體進料系統 21
3-1-2 常壓微波電漿產生系統 22
3-1-3 產物分析系統 23
3-2 實驗方法與流程 29
3-2-1 實驗方法 29
3-2-2 實驗流程與步驟 30
3-3 參數設定 33
第四章 結果與討論 34
4-1 電漿裂解甲烷產氫 34
4-1-1 甲烷轉化率及能量消耗率 34
4-1-2 產物之選擇率與能量消耗率 38
4-1-3 碳黑之固態分析 48
4-1-4 甲烷進料位置之影響 54
4-2 電漿蒸汽重組甲烷產氫 57
4-2-1 水氣/甲烷比例對轉化率與能量消耗率之影響 57
4-2-2 產物之選擇率與能量消耗率 61
4-2-3 輸入功率對甲烷轉化率及產物選擇率之影響 70
4-2-4 碳黑之固態分析 72
4-2-5 甲烷進流濃度及總進流流量對轉化率之影響 77
4-3 電漿裂解甲烷與蒸汽重組甲烷反應機制之推論 78
4-3-1 光學發射光譜之活性物種與躍遷波長 78
4-3-2 純N2光譜定性分析 82
4-3-3 電漿裂解甲烷 84
4-3-4 電漿蒸汽重組甲烷 88
4-3-4-1 水氣/甲烷比例的影響 88
4-3-4-2 輸入功率的影響 91
4-3-4-3 甲烷進流濃度的影響 94
第五章 結論與建議 97
參考文獻 99
附錄 109
1.Alvarez, R., Quintero, M. C., Rodero, A., “Radical Distribution of Electron Desnity, Gas Temperature and Air Species in a Torch Kind Helium Plasma Produced at Atmospheric Pressure”, Spectrochim. Acta, Part B: At. Spectrosc., 59, 709-721, 2004.
2.Back, M. H., “Mechanism of the Bimolecular Reactions of Ethylene and Propylene”, Int. J. Chem. Kinet., 2, 409-418, 1970.
3.Ballerini, G., Ogle, K., Barthes-Labrousse, M.-G., “The Acid-Base Properties of the Surface of Native Zinc Oxide Layers: An XPS Study of Adsorption of 1,2-Diaminoethane”, Applied Surface Science, 253, 6860-6867, 2007.
4.Bauerle, S., Klatt, M., Wagner, H. G., “Recombination and Decomposition of Methylene Radicals at High Temperatures”, Ber. Bunsenges. Phys. Chem., 99, 870-879, 1995.
5.Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, Th., Kerr, J. A., Pilling, M. J., Troe, J., Walker, R. W., Warnatz, J., “Evaluated Kinetic Data for Combustion Modelling”, J. Phys. Chem. Ref. Data, 21, 411-429, 1992.
6.Baulch, D. L., Cobos, C. J., Cox, R. A., Frank, P., Hayman, G., Just, Th., Kerr, J. A., Murrells, T., Pilling, M. J., Troe, J., Walker, R. W., Warnatz, J., “Evaluated Kinetic Data for Combusion Modelling. Supplement I”, J. Phys. Chem. Ref. Data, 23, 847-1033, 1994.
7.Bia, M., Zhang, Z., Bai, X., Ning, W., “Plasma Synthesis of Ammonia with a Microgap Dielectric Barrier Discharge at Ambient Pressure”, IEEE Trans. Plasma Sci., 31(6), 1285-1291, 2003.
8.Bilbao, R., Millera, A., Alzueta, M. U., “Influence of the temperature and Oxygen on NOx Reduction in the Natural Gas Reburning Process”, Ind. Eng. Chem. Res., 33, 2846-2852, 1994.
9.Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., Salmeron, M., “The Premelting of Ice Studied with Photoelectron Spectroscopy”, Journal of Physics:Condensed Matter, 14, L227-L233, 2002.
10.Bonard, A., Daele, V., Delfau, J. L., Vovelle, C., “Kinetics of OH Radical Reactions with Methane in the Temperature Range 295-660 K and with Dimethyl Ether and Methyl-tert-butyl Ether in the Temperature Range 295-618 K”, J. Phys. Chem. A, 106, 4384-4389, 2002.
11.Bromberg, L., Cohn, D. R., Rabinovich, A., O’Brien, C., Hochgreb, S., “Plasma Reforming of Methane”, Energy Fuels, 12, 11-18, 1998.
12.Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, A. N., “Plasma Catalytic Reforming of Methane”, Int. J. Hydrogen Energy, 24, 1131-1137, 1999.
13.Bryukov, M. G., Slagle, I. R., Knyazev, V. D., “Kinetics of Reactions of H Atoms with Ethane and Chlorinated Ethanes”, J. Phys. Chem. A, 105, 6900-6909, 2001.
14.Burrell, M. C., Chera, J. J., “Charge Correction of the Binding Energy Scale in XPS Analysis of Polymers Using Sudface Deposition of PDMS”, Surface and Interface Analysis, 27, 811-815, 1999.
15.Cano, E., Torres, C. L., Bastidas J. M., “An XPS Study of Copper Corrosion Originated by Formic Acid Vapour at 40% and 80% Relative Humidity”, Materials and Corrosion, 52, 667-676, 2001.
16.Chan, S.H., Wang, H. M., “Thermodynamic Analysis of Natural-Gas Fuel Processing for Fuel Cell Applications”, Int.. J. Hydrogen Energy, 25, 441-449, 2000.
17.Chang, A. H., Lin, S. H., “A Theoretical Study of the O(1D) + CH4 Reaction II”, Chem. Phys. Lett., 384, 229-235, 2004
18.Chapman, B., “Glow Discharge Processes”, Wiley-Interscience Publication, Canada, 297, 1980.
19.Chatei, H., Belmahi, M., Assouar, M. B., Le Brizoual, L., Bourson, P., Bougdira, J., “Growth and Characterisation of Carbon Nanostructures Obtained by MPACVD system Using CH4/CO2 Gas Mixture”, Diamond and Related Materials, 15, 1041-1046, 2006.
20.Chaudhary, K., Inomata, K., Yoshimoto, M., Koinuma, H., “Open-air Silicon Etching by H2-He-CH4 Flowing Cold Plasma”, Materials Letters, 57, 3406-3411, 2003.
21.Cicala, G., Bruno, P., Losacco, A. M., Mattei, G., “Plasma Deposition of Hydrogenated Diamond-Like Carbon Films from CH4-Ar Mixtures”, Surface and Coatings Technology, 180-181, 222-226, 2004.
22.Coburn, J. W., Chen, M., “Optical Emission Spectroscopy of Reactive Plasma: a Method for Correlating Emission Intensities to Reactive Particle Density”, J. Appl. Phys., 51(6), 3134-3136. 1980.
23.Cyzewski, A., Ernst, K., Franssen, G., Karasinski, G., Kmieciak, M., Lange, H., Skubiszak, W., Stacewicz, T., “Investigation of Kinetics of CH-Radicals Decay by Cavity Ring-Down Spectroscopy”, Chem. Phys. Lett., 357, 477-482, 2002.
24.Czernichowski, A., Czernichowski, P., “Pyrolysis of Natural Gas in the Gliding Electric Discharges”, 10th Canadian Hydrogen Conference, Quebec, Canada, 2000.
25.Davidson, D. F., DiRosa, M. D., Chang, E. J., Hanson, R. K., Bowman, C. T., “A Shock Tube Study of Methyl-Methyl Reactions Between 1200 and 2400 K”, Int. J. Chem. Kinet., 27, 1179-1196, 1995.
26.Edwards, J. H., Maitra, A. M., “The Reforming of Methane with Carbon Dioxide – Current Status and Future Applications”, Proceedings of Third Natural Gas Conversion Symposium, Sydney, 291-296, 1993.
27.Eliasson, B., Kogelschatz, U., “Nonequilibrium Volume Plasma Chemical Processing”, IEEE Trans. Plasma. Sci., 19(6), 1063-1077, 1991.
28.Fan, W. Y., Knewstubb, P. F., Kaning, M., Mechold, L., Ropcke, J., Davies, P. B., “A Diode Laser and Modeling Study of Mixed (CH4-H2-O2) AC Plasmas”, J. Phys. Chem. A., 103, 4118-4128, 1999.
29.Fincke, J. R., Anderson, R. P., Hyde, T. A., Detering, B. A., “Plasma Pyrolysis of Methane to Hydrogen and Carbon Black”, Ind. Eng. Chem. Res., 41, 1425-1435, 2002.
30.Frank, P., Just, T., “High Temperature Kinetics of Ethylene-Oxygen Reaction”, Proc. Int. Symp. Shock Tubes Waves, 14, 1984.
31.Garton, D. J., Minton, T. K., “Hyperthermal Reactions of O(3P) with Alkanes: Observations of Novel Reaction Pathways in Crossed-Beams and Theoretical Studies”, J. Phys. Chem. A, 107, 4583-4587, 2003.
32.Gelius, U., Hedn, P. F., Linberg, B. J., Manne, R., Nordberg, R., Nordling, C. and Siegbahn, K., “Molecular Spectroscopy by Means of ECSA”, Physica Scripta, 2, 70-80, 1970.
33.Ghorbanzadeh, A. M., Matin, M. S., “Methane Conversion to Hydrogen and Higher Hydrocarbons by Double Pulsed Glow Discharge”, Plasma Chem. Plasma Process., 25(1), 19-29, 2005.
34.Goujon, M., Belmonte, T., Henrion, G., “OES and FTIR Diagnostic of HMDSO/O2 Gas Mixtures for SiOx Deposition Assited by RF Plasma”, Surface and Coatings Technology, 188-189, 756-761, 2004.
35.Hammer Th., Kappes, Th., Baldauf, M., “Plasma Catalytic Hybrid Processes: Gas Discharge Initiation and Plasma Activation of Catalytic Process”, Catal. Today., 89, 5-14, 2004.
36.Harding, L. B., Georgievskii, Y., Klippenstein, S. J., “Predictive Theory for Hydrogen Atom - HydroCarbon Radical Association Kinetics”, J. Phys. Chem. A, 109, 4646-4656, 2005.
37.Heintze, M., Magureanu, M., Kettlitz, M., “Mechanism of C2 Hydrocarbon Formation from Methane in a Pulsed Microwave Plasma”, Journal of Applied Physics, 92, 7022-7031, 2002.
38.Heinzel, A., Vogel, B., Hubner, P., “Reforming of Natural Gas—Hydrogen Generation for Small Scale Stationary Fuel Cell Systems”, Journal of Power Sources, 105, 202-207, 2002.
39.Hinds, H. R., “Hydrogen Energy”, Int. J. Hydrogen Energy, 22, 97-99, 1997.
40.Hiraoka, K., Aoyama, K., Morise, K., “A Study of Reaction Mechanisms of Methane in a Radio-Frequency Glow Discharge Plasma Using Radical and Ion Scavengers”, Can. J. Chem. Eng., 63(11), 2899-2905, 1985.
41.Hitchcock, A. P., Urquhart, S. G., Rightor, E. G., “Inner-Shell Spectroscopy of Benzaldehyde, Terephthalaldehyde, Ethyl Benzoate, Terephthaloyl Chloride, and Phosgene: Models for Core Excitation of Poly(ethylene terephthalate)”, J. Phys. Chem., 96, 8736-8750, 1992.
42.Hsieh, L. T., Lee, W. J., Chen, C. Y., Chang, M. B., Chang, H. C., “Converting Methane by Using a RF Plasma Reactor”, Plasma Chem. Plasma Proc., 18, 215-239, 1998.
43.Hsueh, H. P., McGrath, R.T., Ji, B., Felker, B. S., Langan, J. G.., Karwacki, E. J., “Ion Energy Distribution and Optical Emission Spectra in NF3-based Process Chamber Plasma”, J. Vac. Sci. Technol. B, 19(4), 1346-1357, 2001.
44.Huarte-Larranaga, F., Manthe, U., “Accurate Quantum Dynamics of a Combustion Reaction: Thermal Rate Constants of O(3P) + CH4(X1A1) → OH(X2Î ) + CH3 (x2A2'')”, J. Chem. Phys., 117, 4635-4638, 2002.
45.Hueso, J. L., Gonzalez-Elipe, A. R., Cotrino, J., Caballero, A., “Plasma Chemistry of NO in Complex Mixtures Excited with a Surfatron Launcher”, J. Phys. Chem. A, 109, 4930-4938, 2005.
46.Husain, D., Kirsch, L. J., “Reactions of Atomic Carbon C(23PJ) by Kinetic Absorption Spectroscopy in the Vacuum Ultra-Violet”, Trans. Faraday Soc., 67, 2025-2035, 1971.
47.Jeong, B. Y., Kim, M. H., “Effects of the Process Parameters on the Layer Formation Behavior of Plasma Nitrided Steel”, Surf. Coat. Technol., 141, 182-186, 2001.
48.Jeong, H. K., Kim, S. H., Han, C., Lee, H., Song, H. K., Na, B. K., “Conversion of Methane to Higher Hydrocarbons in Pulsed DC Barrier Discharge at Atmospheric Pressure”, Korean J. Chem. Eng., 18(2), 196-201, 2001.
49.Kabashima, H., Futamura, S., “Continuous Production of Synthesis Gas at Ambient Temperature from Steam Reforming of Methane with Nonthermal Plasma”, Chem. Lett., 31(11), 1108-1109, 2002.
50.Kado, S., Sekine, Y., Fujimoto, K., “Direct Synthesis of Acetylene from Methane by Direct Current Pulse Discharge”, Chem. Commun., 24, 2485-2486, 1999.
51.Kado, S., Urasaki, K., Sekine, Y., Fujimoto, K., “Low Temperature Reforming of Methane to Synthesis Gas with Direct Current Pulse Discharge Method”, Chem. Commun., 5, 415-416, 2001.
52.Kamei, Q., Onoe, Kaoru., Marushima and Yamaguchi, T., “Brown Coal Conversion by Microwave Plasma Reactions under Successive Supply of Methane”, Fuel, 77, 1503-1506, 1998.
53.Kim, S. S., Lee, H., Na, B. K., Song, H. K., “Plasma-Assisted Reduction of Supported Metal Catalyst Using Atmospheric Dielectric-Barrier Discharge”, Catal. Today., 89, 193-200, 2004.
54.Kim, K. S., Seo, J. H., Nam, J. S., Ju, W. T., Hong, S. H., “Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas”, IEEE Trans. Plasma Sci., 33(2), 813-823, 2005.
55.Knyazev, V. D., Bencsura, A., Stoliarov, S. I., Slagle, I. R., “Kinetics of the C2H3 + H2 = H + C2H4 and CH3 + H2 = H + CH4 Reactions”, J. Phys. Chem., 100, 11346-11354, 1996.
56.Lasorsa, C., Morando, P. J., Rodrigo, A., “Effects of The Plasma Oxygen Concentration on The Formation of SiOxCy Films by Low Temperature PECVD”, Surface and Coatings Technology, 194, 42-47, 2005.
57.Lau, N. T. and Fang, M., “On the Formation of Carbonyl Sulfide in the Reduction of Sulfur Dioxide by Carbon Monoxide on Lanthanum Oxysulfide Catalyst; A Study by XPS and TPR/MS”, J. Catal., 179, 343-349, 1998.
58.Le, H., Lobban, L. L., Mallinson, R. G., “Some Temperature Effects on Stability and Carbon Formation in Low Temperature AC Plasma Conversion of Methane”, Catal. Today., 89, 15-20, 2004.
59.Liu, C. J., Mallinson, R. and Lobban, L., “Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites”, Appl. Catal. A: General, 178, 17-27, 1999.
60.Liu, D., Xu, Y., Yang, X., Yu, S., Sun, Q., Zhu, A., Ma, T., “Diagnosis of Dielectric Barrier Discharge CH4 Plasmas for Diamond-Like Carbon Film Deposition”, Diamond and Related Materials, 11, 1491-1495, 2002.
61.Liu, F., Du, C. H., Zhu, B. K., Xu, Y. Y., “Surface Immobilization of Polymer Brushes onto Porous Poly(vinylidene fluoride) Membrane by Electron Beam to Improve the Hydrophilicity and Fouling Resistance”, Polymer, 48, 2910-2918, 2007.
62.Lunsford, J. H., “Catalytic Conversion of Methane to More Useful Chemicals and Fuels: a Challenge for the 21st Century”, Catal. Today., 63, 165-174, 2000.
63.Madhu Kumar, P., Badrinarayanan, S., Sastry, M., “Nanocrystalline TiO2 Studied by Optical, FTIR and X-ray Photoelectron Spectroscopy: Correlation to Presence of Surface States”, Thin Solid Films, 358, 122-130, 2000.
64.Makabe, T., Petrovic Z. L., “Development of Optical Computerized Tomography in Capacitively Coupled Plasma and Inductivly Coupled Plasma for Plasma Etching”, Applied Surface Science, 192, 88-114, 2002.
65.Mantzaris, N. V., Gogolides, E., Boudouvis, A. G., “A Comparative Study of CH4 and CF4 RF Discharges Using a Consistent Plasma Physics and Chemistry Simulator”, Plasma Chem. Plasma Process., 16(3), 301-327, 1996.
66.McCarthy, R. L., “Chemical Synthesis from Free Radicals Produced in Microwave Fields” J. Chem. Phys., 22(8), 1360-1365, 1954.
67.Mizuno, A., Shimizu, K., Matsuoka, T., Furuta, S., “Reactive Absorption of NOx Using Wet Discharge Plasma Reactor”, IEEE Trans. Ind. Appl., 31, 1463-1468, 1995.
68.Moon, J. D., Lee, G. T., Chung, S. H., “SO2 and CO Gas Removal and Discharge Characteristics of a Nonthermal Plasma Reacter in a Crossed DC Magnetic Field”, IEEE Trans. Ind. Appl., 35, 1198-1204, 1999.
69.MSDS (CH4) (http://www.iosh.gov.tw/data/msds/msds0085.pdf)
70.MSDS (H2) (http://www.iosh.gov.tw/data/f11/n70.htm)
71.Mutaf-Yardimci, O., Saveliev, A. V., Fridman, A. A., Kennedy, L. A., “Employing Plasma as Catalyst in Hydrogen Production”, Int. J. Hydrogen Energy, 23, 1109-1111, 1998.
72.NIST (http://kinetics.nist.gov/index.php)
73.Nozaki, T., Muto, N., Kado, S., Okazaki, K., “Dissociation of Vibrationally Excited Methane on Ni Catalyst Part 1. Application to Methane Steam Reforming”, Catal. Today., 89, 57-65, 2004.
74.Obraztsov, A. N., Zolotukhin, A. A., Ustinov, A. O., Volkov, A. P., Svirko, Y., Jefimovs, K., “DC Discharge Plasma Studies for Nanostructured Carbon CVD”, Diamond and Related Materials, 12, 917-920, 2003.
75.Okumoto, M., Mizuno, A., “Conversion of Methane for Higher Hydrocarbon Fuel Synthesis Using Pulsed Discharge Plasma Method”, Catal. Today., 71, 211-217, 2001.
76.Ottinger, C., Vilesov, A. F., “Intramolecular Collisional Transfer in NO : Gateway-type, Resonant versus Direct, Nonresonant Mechanisms”, J. Chem. Phys., 100(3), 1805-1814, 1994.
77.Oumghar, A., Legrand, J. C., Diamy, A. M., Turillon, N., “Methane Conversion by An Air Microwave Plasma”, Plasma Chemistry and Plasma Processing, 15, 87-107, 1995.
78.Paraskevopoulos, G., Winkler, C. A., “The Rates of the Reactions of Active Nitrogen with Ethylene and Propylene”, J. Phys. Chem., 71, 947-951, 1967.
79.Patino, P., Perez, Y., Caetano, M., “Coupling and Reforming of Methane by means of Low Pressure Radio-Frequency Plasmas”, Fuel, 84, 2008-2014, 2005.
80.Portela, L., Grange, P. and Delmon, B., “XPS and NO Adsorption Studies on Alumina-Supported Co-Mo Catalysts Sulfided by Different Procedures”, J. Catal., 156, 243-254, 1995.
81.Pouilleau, J., Devilliers, D., Groult, H., Marcus, P., “Surface Study of a Titanium-Based Ceramic Electrode Material by X-ray Photoelectron Spectroscopy”, Journal of Materials Science, 32, 5645-5651, 1997.
82.Raizer, Y. P., Allen, J. E., Kisin, V. I., “Gas Discharge Physics”, Springer-Verlag Berlin Heideberg Present, Texas, 1991.
83.Rie, K. T., Menthe, E., Wohle, J., “Optimization and Control of a Plasma Carburizing Proess by Means of Optical Emission Spectroscopy”, Surf. Coat. Tech., 98, 1192-1198, 1998.
84.Rohrig, M., Petersen, E. L., Davidson, D. F., Hanson, R. K., Bowman, C. T., “Measurement of the Rate Coefficient of the Reaction CH+O2 → Products in the Temperature range 2200 to 2600 K”, Int. J. Chem. Kinet., 29, 781-789, 1997.
85.Sastri, M. V. C., “Hydrogen Energy Progress-XI”, Int. J. Hydrogen Energy, 22, 729-730, 1997.
86.Schulz, G., Klotz, H. D., Spangenberg, H. J., “Reaktionsmodell zur Bruttokinetik der Pyrolyse von Methan im Stosswellenrohr bei Temperaturen von 1800 K bis 2500 K”, Z. Chem., 25, 88, 1985.
87.Shalish, I., Shapira, Y., Burstein, L., Salzman, J., “Surface States and Surface Oxide in GaN Layers”, Journal of Applied Physics, 89, 390-395, 2001.
88.Song, H. K., Choi, J. W., Yue, S. H., Lee, H., Na, B. K., “Synthesis Gas Production via Dielectric Barrier Discharge over Ni/γ-Al2O3 Catalyst”, Catal. Today., 89, 27-33, 2004.
89.Sekiguchi, H., Mori, Y., “Stream Plasma Reforming Using Microwave Discharge”, Thin Solid Films, 435, 45-48, 2003.
90.Suib, S. L., Zerger, R. P., “A Direct, Continuous, Low-Power Catalytic Conversion of Methane to Higher Hydrocarbons via Microwave Plasmas”, J. Catal., 139, 383-391, 1993.
91.Supat, K., Chavadej, S., “Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge”, Ind. Eng. Chem. Res. 42, 1654-1661, 2003a.
92.Supat, K., Kruapong, A., Chavadej, S., “Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge”, Energy & Fuel, 17, 474-481, 2003b.
93.Sutherland, J. W., Su, M. C., Michael, J. V., “Rate Constants for H + CH4 , CH3+H2, and CH4 Dissociation at High Temperature”, Int. J. Chem. Kinet., 33, 669-684, 2001.
94.Tabayashi, K., Bauer, S. H., “The Early Stages of Pyrolysis and Oxidation of Methane”, Combust. Flame, 34, 63-83, 1979.
95.Takahashi, S., “The Reaction Between Methane and Nitrogen Atom”, Mem. Def. Acad., Math., Phys., Chem. Eng., 12, 1972.
96.Takaki, K., Chang, J. S., Kostov, K. G., “Atmospheric Pressure of Nitrogen Plasmas in a Ferro-Electric Packed Bed Barrier Discharge Reactor Part I: Modeling”, IEEE Trans. Electr. Insul., 11(3), 481-489, 2004.
97.Tamamoto, T., Jang, B. W.-L., “Aerosol Generation and Decomposition of CFC-113 by the Ferroelectric Plasma Reactor”, IEEE Trans. Ind. Appl., 35, 736-742, 1999.
98.Tappero, F., Abe, Y., Takagi, Y., Tanaka, Y., Maizza, G., “Wireless Optical Diagnostic Apparatus for Analyzing Diamond Thin Film CVD Process Under High Gravity Conditions”, Diamond and Related Materials, 13, 2063-2070, 2004.
99.Tarr, A. M., Strausz, O. P., Gunning, H. E., “Reactions of the Ethynyl Radical. Part 2.-With Alkenes”, Trans. Faraday Soc., 62, 1221-1230, 1966.
100.Thanyachotpaiboon, K., Chavadej, S., “Conversion of Methane to Higher Hydrocarbons in AC Nonequilibrium Plasmas”, AIChE J., 44(10), 2252-2257, 1998.
101.Tikhonova, L. P., Lyubchik, S. B., Tarasenko, Y. A., Goncharik, V. P., Galushko, O. L., Fonseca, I., “Modified Anthracites as Selective Sorbents for Platinum Metals”, Russian Journal of Applied Chemistry, 79, 727-732, 2006.
102.Timmermans, E. A. H., Jonkers, J., Rodero, A., Quintero, M. C., Sola, A., Gamero, A., Schram, D. C., Mullen van der, J. A. M., “The Behavior of Molecules in Microwave-Induced Plasma Studies by Optical Emission Spectroscopy. 2: Plasma at Reduced Pressure”, Spectrochemica Acta Part B: At. Spectrosc., 54, 1085-1098, 1999.
103.Tsai, C. H., Hsieh, T. H., “New Approach for Methane Conversion Using a RF Discharge Reactor. 1. Influences of Operating Conditions on Syngas Production”, Ind. Eng. Chem. Res., 43, 4043-4047, 2004.
104.Tsai, C. H., Hsieh, T. H., Shih, M., Huang, Y. J., Wei, T. C., “Partial Oxidation of Methane to Synthesis Gas via a Microwave Plasma Torch”, AIChE J., 51, 2853-2858, 2005.
105.Tsang, W., “Chemical Kinetic Data Base for Propellant Combustion. II. Reactions Involving CN, NCO, and HNCO”, J. Phys. Chem. Ref. Data, 21, 753-791, 1992.
106.Watson, A. Y., Valberg, P. A., “Carbon Black and Soot: Two Different Substances”, AIHAJ, 62, 218-228, 2001.
107.Woo, Y. S., Jeon, D. Y., Han, I. T., Lee, N. S., Jung, J. E. Kim, J. M., “In situ Diagnosis of Chemical Species for the Growth of Carbon Nanotubes in Microwave Plasma-Enhanced Chemical Vapor Dposition”, Diamond and Related Materials, 11, 59-66, 2002.
108.Wuebbles, D. J., Hayhoe, K., “Atmospheric Methane and Global Change”, Earth-Science Reviews, 57, 177-210, 2002.
109.Yao, S. L., Suzuki, E., Nakayama, A, “The Pyrolysis Property of a Pulsed Plasma of Methane”, Plasma Chem. Plasma Proc., 21(4), 651-663, 2001.
110.Yao, S. L., Suzuki, E., Meng, N., Nakayama, A., “A High-Efficiency Reactor for the Pulsed Plasma Conversion of Methane”, Plasma Chem. Plasma Proc., 22(2), 225-237, 2002.
111.Yokoyama, T., Arvanitis, D., Lederer, T., Tischer, M., Troger, L., Baberschke, K., “Adsorption of Oxygen on Cu(100). II. Molecular Adsorption and Dissociation by means of O K-edge X-ray-adsorption Fine Structure”, Physical Review B, 48, 405-416, 1993.
112.Yu, H. G., Nyman, G., “Quantum Dynamics of the O(3P) + CH4 → OH + CH3 Reaction: An Application of the Rotating Bond Umbrella Model and Spectral Transform Subspace Iteration”, J. Chem. Phys., 112, 238-247, 2000.
113.Yurum, Y., “Hydrogen Production Methods”, Proceeding of the NATO Advanced Study Institute on Hydrogen Energy System, Utilization of Hydrogen and Future Aspects, Turkey, 295, 15-30, 1994.
114.Zaman, J., “Oxidative Processes in Natural Gas Conversion”, Fuel Processing Technology, 58, 61-81, 1999.
115.Zambrano, G., Riascos, H., Prieto, P., Restrepo, E., Devia, A., Rincon, C., “Optical Emission Spectroscopy Study of R.F. Magnetron Sputtering Discharge Used for Multilayers Thin Film Deposition”, Surface and Coatings Technology, 172, 144-149, 2003.
116.Zelson, L. S., Davidson, D. F., Hanson, R. K., “V.U.V. Absorption Diagnostic for Shock Tube Kinetics Studies of C2H4”, J. Quant. Spectrosc. Radiat. Transfer, 52, 31-43, 1994.
117.Zemlyanov, D. Y., Savinova, E., Scheybal, A., Doblhofer, K., Schlogl, R., “XPS Observation of OH Groups Incorporated in an Ag(111) Electrode”, Surface Science, 418, 441-456, 1998.
118.Zhou, L. M., Xue, B., Kogelschatz, U., Eliasson, B., “Nonequilibrium Plasma Reforming of Greenhouse Gases to Synthesis Gas”, Energy and Fuels, 12, 1191-1199, 1998.
119.Zhu, R. S., Xu, Z. F., Lin, M. C., “Ab Initio Studies of Alkyl Radical Reactions: Combination and Disproportionation Reactions of CH3 with C2H5, and the Decomposition of Chemically Activated C3H8”, J. Chem. Phys., 120, 6566-6573, 2004.
120.趙裕、李財興、黃慶村,“非熱電漿重組甲烷產氫之研究”,第二十一屆空氣污染控制技術研討會,台南市,2004。
121.趙裕、黃慶村,“電漿輔助觸媒重組甲烷/甲醇產氫技術研究”,第二十二屆空氣污染控制技術研討會,桃園,2005。
122.蔡政賢,含硫氣體化合物於高週波電漿中之反應機制,國立成功大學環境工程學系,博士論文,2001。
123.李灝銘,張木彬,“氣體污染控制新技術-非熱電漿技術”,工業污染防治,第89期,169-191,2004。
124.徐春蕾、董家騼、楊鴻生、孫德坤、楊春,“微波電漿條件下甲烷的偶聯反應”,南京師大學報,第27卷第4期,55-58,2004。
125.高正雄,「電漿化學」,復漢出版社,1997。
126.鄧瑞斌,林再興,“二十一世紀的新能源-天然氣水合物”,科學發展,361期,62-65,2003。
127.謝惠子,“新尖兵概念-淺談氫氣”,能源報導,2005。
http://www.tier.org.tw/energymonthly/outdatecontent.asp?ReportIssue=9401&Page=35
128.卓韋,「能量與能源」,業強出版社,1995。
129.蔡蘊明,http://www.chemedu.ch.ntu.edu.tw/lecture1/GC.htm
130.賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top