跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家宏
研究生(外文):chia-hung liu
論文名稱:抗靜電性聚亞醯胺之配製及其物性探討
論文名稱(外文):Preparation and Properties of the Anti-Electrostatic Polyimide
指導教授:林榮顯陳奕宏陳奕宏引用關係
指導教授(外文):Rong-Hsien LinYi-Hung Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:113
中文關鍵詞:聚亞醯胺導電性高分子混摻抗靜電
外文關鍵詞:polyimideconducting polymerblendinganti-electrostatic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
本研究之聚亞醯胺(PI)抗靜電性複材是由聚醯胺酸(PAA)溶液或/及具有磺酸官能基之聚醯胺酸(PAAS)利用低溫真空條件製備而得。PI之前驅物PAA溶液或PAAS溶液分別經由3,3’,4,4’-biphenyltetracarboxylic dianhydride(s-BPDA)與4,4’-oxydianiline(4,4'-ODA)或/及與具磺酸官能基之2,2’-benzidinedisulfonic acid (BDSA),利用溶液聚縮合法製備而成,由FTIR光譜圖可鑑定其結構。
在PI/PIS/PPyH混摻複材系統中,以化學氧化法由Pyrrole(Py)製備含HCA添加劑之導電性聚合物Polypyrrole-H(PPyH),隨後再與前述所得之PAA溶液或/及PAAS溶液進行混摻(blending),以低溫真空條件,改變PAAS溶液與PPyH混摻之百分比製備其混摻複材。由導電度計可量測複材導電度隨PPyH添加量的增加而增加,當添加量為20 phr時導電度達10-5 S/cm。複材橫斷面SEM影像圖可觀察到系統在引入PPyH後,複材有相分離的情形發生。
在PI/PIS/PPyH微粒混摻系統中,首先由s-BPDA與4,4’-ODA單體利用超音波震盪法成功製備出微米級聚醯胺酸顆粒(PAA particle),由FTIR光譜可鑑定其結構,由SEM影像圖可觀察其粒徑約在1.3 μm~1.7 μm間。隨後利用PAA particle吸收pyrrole(Py)單體,製備含HCA添加劑,核殼結構(core-shell)之PAA/PPyH微粒。由SEM可觀察PAA particle外部包覆有一層PPyH。隨後再與前述所得之PAA溶液或/及PAAS溶液進行混摻,以低溫真空條件,改變PAAS溶液與PAA/PPyH微粒混摻之百分比製備其混摻複材。由導電度計可量測複材導電度隨PPyH添加量的增加而些微增加,當添加量為20 phr時,導電度為10-7 S/cm。由SEM影像圖可觀察到,在PAA/PPyH微粒添加量達到20 phr時仍沒有明顯相分離的情況發生。因此,預先將PPyH製備成PAA/PPyH微粒可改善PI/PIS基材與PPyH相分離的情形。
在PI/PIS/P3MT混摻複材系統中,以化學氧化法由3-methylthiophene(3-MT)製備導電性聚合物Poly(3-methylthiophene) (P3MT)。隨後與前述所得之PAA溶液或/及PAAS溶液進行混摻,以低溫真空條件,改變PAAS溶液與P3MT混摻之百分比製備其混摻複材。由導電度計可量測複材導電度隨P3MT添加量的增加而增加,當添加量為10 phr時導電度即可達複材導電度之最高值,為10-7 S/cm,再增加P3MT的添加量也不會提升複材之導電度。由SEM影像圖可觀察到系統在引入P3MT後,複材橫斷面並沒有明顯相分離的情形發生。另外,在所有系統中,由導電度測試結果可得知磺酸官能基確實有提升系統導電度或是質子導電度的作用。
The anti-electrostatic polyimide composites were successfully prepared via a process with low-temperature and vacuum condition by blending conducting polymer with poly(amic acid) solution (PAA solution) or/and poly(amic acid) solution with sulfonic acid group (PAAS solution). The precursor of polyimide, PAA solution and PAAS solution, were successfully synthesized from 3,3’,4,4’-biphenyltetracarboxylic dianhydride (s-BPDA), 4,4’-oxydianiline (4,4’-ODA) or/and 2,2’-benzidinedisulfonic acid (BDSA), respectively, by a polycondensation method. Chemical structures were investigated by Fourier Transform Infrared Spectrometer (FTIR).
Polypyrrole-H (PPyH) with HCA additive was synthesized by chemical oxidative method and subsequently incorporated into PAA solution or/and PAAS solution by blending method, PI/PIS/PPyH composites were thus fabricated by the low-temperature and vacuum condition. The results suggest that the conductivity of the composites increases with the increase of the PPyH content. The conductivity of the composties was 10-5 S/cm when the PPyH added to 20 phr. Phase separation was observed in the PI/PIS/PPyH composites by SEM when PPyH was added.
Poly(amic acid) particle (PAA particle) was preliminarily and successfully synthesized from s-BPDA and 4,4’-ODA by super-sonication method. The diameter of particles was detected over the range of 1.3 to 1.7 μm by SEM. Core-Shell PAA/PPyH particle was prepared from the synthesized PPyH with HCA additive onto PAA particle surface. The morphology of core-shell was evidenced by TEM image. The core-shell PAA/PPyH particle was subsequently incorporated into PAA solution or/and PAAS solution by a blending method in the PI/PIS/PPyH particle composites system which were prepared using varying content of PAAS solution and PAA/PPyH particle by the low-temperature and vacuum condition. The results suggest that the conductivity of the composites increases slightly with the increase of the PAA/PPyH particle content. The conductivity of the composites was 10-7 S/cm when the PAA/PPyH particle added to 20 phr. No marked phase separation was observed in the PI/PIS/PPyH particle composites by SEM, even if PAA/PPyH particle was added to 20 phr. Therefore, PPyH was prepared to PAA/PPyH particle in advance improved the phase separation of PPyH in the PI/PIS matrix.
Poly(3-methylthiophene) (P3MT) was synthesized by chemical oxidative method and subsequently incorporated into PAA solution or/and PAAS solution by blending method in PI/PIS/P3MT composites system which were prepared using varying content of PAAS solution and PPyH by the low-temperature and vacuum condition. The results suggest that the conductivity of the composites increases with the increase of the P3MT content. The conductivity of the composites has a maximum value up to 10-7 S/cm when the P3MT was added to 10 phr, then level off in conductivity even if the P3MT content increases. No marked phase separation was observed in the PI/PIS/P3MT composites by SEM when the P3MT was added. In addition, the conductivity or proton conductivity of the composites can be promoted via the addition of sulfonic acid groups.
中文摘要 i
Abstract iii
總目錄 v
流程目錄 (Scheme) vii
表目錄 viii
圖目錄 ix

第一章 緒論 1

1-1. 導電性高分子之簡介及種類 1
1-1.1 導電性高分子簡介 1
1-1.2 導電性高分子種類 2
1-1.3 聚吡咯的簡介 3
1-1.4 聚噻吩的簡介 4
1-1.5 聚合法種類 5
1-2. 聚亞醯胺之特性及種類 6
1-2.1 聚亞醯胺之特性 6
1-2.2 聚亞醯胺之種類 7
1-3. 抗靜電性聚亞醯胺複合材料之製備 8

第二章 基本原理及文獻回顧 10

2-1. 基本理論 10
2-2. 沉積金屬或添加金屬顆粒製備抗靜電性聚亞醯胺複合材料 11
2-3. 利用表面處理製備抗靜電性聚亞醯胺複合材料 12
2-4. 添加奈米碳管製備抗靜電性聚亞醯胺複合材料 13
2-5. 與本質導電聚合物混摻製備抗靜電性聚亞醯胺複合材料 16
2-6. 研究動機及目的 16

第三章 實驗部分 18

3-1. 實驗材料 18
3-2. 實驗儀器 20

第四章 結果與討論 23

4-1. 各類Polyamic acid solution(PAA solution)之合成與分析 23
4-1.1 不具磺酸基之PAA solution合成與分析 23
4-1.2 具磺酸基之PAA solution(PAAS solution)合成與分析 23
4-2. 混摻導電高分子Polypyrrole(PPy)系統 24
4-2.1 PI/PIS/PPyH混摻複材系統 24
4-2.2 PI/PIS/PPy混摻複材系統 29
4-2.3 PI/PIS/PPyH微粒混摻複材系統 31
4-2.4 PI/PIS/PPy微粒混摻複材系統 36
4-3. 混摻導電高分子Poly(3-methylthiophene)(P3MT)系統 39
4-3.1 PI/PIS/P3MT混摻複材系統 39
4-3.2 PI/PIS/P3MT微粒混摻系統 42

第五章 結論 45

第六章 參考文獻 53
【1】 L.H. Sperling, Introduction to physical polymer science, 1~6
【2】 H. Shirakawa, S. Ikeda, 1971, Polymer 2, 231.
【3】 H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger J., 1977, Chem. Soc., Chem. Commum., 578
【4】 C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Lousi, S. C. Gau, A. G. MacDiarmid, 1977, Phys. Rev Lett. 39, 1098.
【5】 Epstin, A. J., and MacDiarmid, A. G., 1989, polyaniline:Solution, Film, and Oxidation State, Proc. Faraday Society, Faraday Trans.
【6】 何國賢,謝達華, 1997, 塑膠資訊 12, 28~36
【7】 Terje A. Skotherm, Ronald L. Elsenbaumer, John R. Reynolds, 1998, Handbook of Conducting Polymers 2ed.
【8】 B. Wessling, 1991, Synthetic Metals 4, 119~149
【9】 J. Roncali, 1992, Chem. Rev. , 92, 711
【10】 F. Chen, P. G. Metha, L. Takiff, R. D. McCullough, 1996, J. Mater. Chem., 6, 1763
【11】 S.-A. Chen, C.-C. Tsai, 1995, Macromolecules, 28, 7525
【12】 M. Granstrom, O. Inganas, 1992, Synth. Met., 48, 21
【13】 R. L. Elsenbaumer, K. Y. Jen, R. Obodi, 1986, Synth. Met., 15, 169
【14】 A. Angeli, 1916, Gazz. Chim. Ital., 46, 279
【15】 G. P. Gardini, 1973, Adv. Heterocycl. Chem., 15, 67
【16】 S. Machida, S. Miyata, and A. Techagumpuch, 1989, Syn. Met., 31, 311
【17】 J. B. Schlenoff, F. Yoke, and C. Shen, 1991, Macromolecules, 24, 6791
【18】 Y. E. Whang, J. H. Han, T. Motobe, T. Watanabe, and S. Miyata, 1991, Syn. Met., 45, 151
【19】 For reviews, see T. A. Skotheim, Ed., Handbook of Conducting Polymers, Vols. 1 and 2, Marcel Dekker, New York, 1986.
【20】 K. Yoshino, S. Nakajima, S. Fujii, and R. Sugimoto, 1987, Polym. Commun., 28, 309
【21】 J. R. Reynolds,J. P. Ruiz, A. D. Child, K. Nayak, and D. S. Marynick, 1991, Macromolecules, 24, 678
【22】 Richard D. McCullough, 1998, Adv. Mater., 10 93-116
【23】 K. Tanaka, T. Shichiri, M. Toroumi and T. Yamobe, 1989, Synth. Met.,
30, 271
【24】 W. M. Edward, I. M. Robinson, 1955, US Pat. 2710853
【25】 William D. Callister, JR., Fundamentals of Materials Science and Engineering, chap. 12.
【26】 Jin Ma, Xiaotao Hao, Shulai Huang, Jie Huang, Yingge Yang, Honglei Ma, 2003, Appl. Surf. Sci. 214, 208~213
【27】 Shu-Hui Xie, Bao-Ku Zhu, Zhi-Kang Xu, You-Yi Xu, 2005, Mater. Lett. 59, 2403~2407
【28】 Kensuke Akamatsu, Shingo Ikeda, Hidemi Nawafune, Shigehito Deki, 2003, Chem. Mater. 15, 2488~2491
【29】 Kensuke Akamatsu, Shingo Ikeda, Hidemi Nawafune, 2003, Langmuir. 19, 10366~10371
【30】 Kensuke Akamatsu, Shingo Ikeda, Hidemi Nawafune, Hiroshi Yanagimoto, 2004, J. Am. Chem. Soc. 126, 10822~10823
【31】 Zhanpeng Wu, Dezhen Wu, Shengli Qi, Teng Zhang, Riguang Jin, 2005, Thin Solid Films. 493, 179~184
【32】 Shengli Qi, Dezhen Wu, Zongwu Bai, Zhanpeng Wu, Wantai Yang, Riguang Jin, 2006, Macromol. Rapid Commun. 27, 372~376
【33】 Jong-Young Jeon, Tae-Moon Tak, 1996, J. Appl. Polym. Sci. 61, 371~382
【34】 Jong-Young Jeon, Tae-Moon Tak, 1996, J. Appl. Polym. Sci. 61, 529~544
【35】 Sheng-Li Qi, De-Zhen Wu, Zhan-Peng Wu, Wen-Cai Wang, Ri-Guang Jin, 2006, Polymer 47, 3150~3156
【36】 Cheol Park, Zoubeida Ounaies, Kent A. Watson, Roy E. Crooks, Joseph Smith Jr., Sharon E. Lowther, John W. Connell, Emilie J. Siochi, Joycelyn S. Harrison, Terry L. St. Clair, 2002, Chem. Phys. Lett. 364, 303~308
【37】 Kent A. Watson, Sayata Ghose, Donavon M. Delozier, Joseph G. Smith Jr, John W. Connell, 2005, Polymer 46, 2076~2085
【38】 Mark Weber, Musa R. Kamal, 1997, Polym. Compos. 18, 711~725
【39】 Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo, 2005, Polymer 46, 7418~7424
【40】 Jason J. Ge, Dong Zhang, Qing Li, Haoqing Hou,Matthew J. Graham, Liming Dai, Frank W. Harris, Stephen Z. D. Cheng, 2005, J. Am. Chem. Soc. 127, 9984~9985
【41】 D.M. Delozier, K.A. Watson, J.G. Smith, J.W. Connell, 2005, Compos. Sci. Technol. 65, 749~755
【42】 Donavon M. Delozier, Kent A. Watson, Joseph G. Smith, Jr., Thomas C. Clancy, John W. Connell, 2006, Macromolecules. 39, 1731~1739
【43】 Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang Xu, You-Yi Xu, 2006, Compos. Sci. Technol. 66, 548~554
【44】 Jinwei Wang, M.P. Srinivasan, 1999, Synth. Met. 105, 1~7
【45】 P. A. Calvo, J. Rodriguez, H. Grands, D. Mecerreyes, J. A. Pomposo, 2002, Synth. Met., 126, 111~116
【46】 W. Jang, C. Lee, S. Sundar, Y. G. Shul, and H. Han, 2005, Polym. degradation stab., 90, 431~440
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top