跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉伊祐
研究生(外文):Yi-You Liu
論文名稱:超順磁性聚甲基丙烯酸甲酯/二氧化鈦複合材料之應用
論文名稱(外文):Application of Superparamagnetic Poly(methyl methacrylate)/TiO2 Composite
指導教授:陳奕宏陳奕宏引用關係林榮顯
指導教授(外文):Yi-Hung ChenRong-Hsien Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:133
中文關鍵詞:四氧化三鐵超順磁性聚甲基丙烯酸甲酯懸浮聚合法二氧化鈦
外文關鍵詞:magnetitesuperparamagneticpoly(methyl methacrylate)suspension polymerizationtitanium dioxide
相關次數:
  • 被引用被引用:4
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對磁性聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA)高分子微球之載體進行製備及特性分析。合成步驟為利用氯化鐵、氯化亞鐵、與氨水,進行化學共沉澱法生產出以四氧化三鐵(magnetite)為中心的超順磁性奈米顆粒,表面再用油酸包覆使其具有親油性,形成具油酸包覆的四氧化三鐵顆粒(oleic acid-coated magnetite particles, OMP)。之後加入聚乙烯醇(poly(vinyl alcohol), PVA)、二乙烯苯(divinylbenzene)、甲基丙烯酸甲酯(methyl methacrylate)、及過氧化苯甲醯(benzoyl peroxide)等進行懸浮聚合法(suspension polymerization),而得到具超順磁性的聚甲基丙烯酸甲酯的高分子微球之載體。藉由穿透式電子顯微鏡(transmission electron micrograph, TEM)、掃描式電子顯微鏡(scanning electron microscopy, SEM)、奈米粒徑分析儀(nanoparticle size analyzer),可觀察得到OMP與磁性PMMA微球的形狀、大小、與粒徑分佈。利用廣角X-ray繞射儀(wide angle x-ray diffraction, WAXD)與熱重分析儀(thermogravimetric analysis, TGA)來量測顆粒所含無機物組成和磁性物質含量。顆粒的磁滯曲線(hysteresis loop)可由超導量子干涉磁量儀(superconductor quantum interference device, SQUID)測量,而得到殘磁量(residual magnetism)與矯頑力(coercive force)等。並以磁性聚甲基丙烯酸甲酯微球為載體,將商業化二氧化鈦光觸媒包覆載體表面,進行催化危害物質對苯二胺(p-phenylenediamine)水溶液,並找出最佳的操作條件,以提高處理效率。
The nano-sized oleic acid-coated magnetite particles (OMP) and its magnetic poly(methyl methacrylate) (PMMA) microspheres were successfully prepared via co-precipitation method and suspension polymerization method, respectively. The nano-sized OMP mixed with methyl methacrylate (MMA) monomers and divinylbenzene were employed to produce the magnetic PMMA microspheres. The morphology and size of magnetic PMMA microspheres and OMP were observed by transmission electron micrograph (TEM), scanning electron microscopy (SEM), and particle size analyzer. The inorganic substance composition and magnetite content of magnetic PMMA microspheres and OMP were observed by wide angle x-ray diffraction (WAXD), and thermogravimetric analysis (TGA). The hysteresis loop, residual magnetism, and coercive force of magnetic PMMA microspheres and OMP were observed by superconductor quantum interference device (SQUID). Application of magnetic PMMA microspheres with titanium dioxide coated surface to degradation of p-phenylenediamine (PPD).
總 目 錄
中文摘要 …………………………………...……………..… I
英文摘要 …………………………...……….………………. II
總目錄 ……………………………………..……...……… III
表目錄 …………………………………….………...……. VII
圖目錄 ……………………………………..……………... VIII
符號說明 …………………………………………………... XVII

第一章 緒論....................................................................... 1
1-1 研究背景……..………………………...…...…..... 1
1-2 研究目的…………..……………...…………..….. 3

第二章 文獻回顧…………...……………….....………. 4
2-1 磁性物質………..…….…………………….....…. 4
2-1-1 磁性流體的源起及發展….………………..…...... 4
2-1-2 磁性物質原理…………….…………………..….. 4
2-1-3 氧化鐵……………………………………………. 7
2-2 聚合技術……………….……………………..….. 8
2-2-1 共混包埋法……………………………….…..….. 8
2-2-2 活化溶脹法………………………………..…..…. 9
2-2-3 介面沈積法………………….…………….……... 10
2-2-4 單體聚合法…………………………………..…... 10
2-2-4-1 乳液聚合法……………………….……………… 11
2-2-4-2 分散聚合法………….…………………………… 12
2-2-4-3 懸浮聚合法…………….………………………… 12
2-3 二氧化鈦光觸媒……………………………..…... 15
2-3-1 二氧化鈦的源起及發展………….……………… 15
2-3-2 二氧化鈦簡介…………….……………………… 15
2-3-3 光催化反應原理…………………………………. 15
2-3-4 光催化反應動力模式……………………………. 17

第三章 儀器設備與研究方法...………….…..……. 18
3-1 實驗藥品………..…….…………………….....…. 18
3-2 實驗步驟……………………………………….… 21
3-2-1 製備具油酸包覆的四氧化三鐵顆粒……………. 21
3-2-2 製備磁性PMMA微球…………………………… 21
3-2-3 溶出測試……..……………………………...…… 22
3-2-4 製備二氧化鈦包覆磁性PMMA微球(TiO2-coated magnetic PMMA microspheres)…....
22
3-2-5 光催化對苯二胺水溶液..………………..………. 22
3-2-6 導入臭氧系統並使用二氧化鈦包覆磁性PMMA微球進行光催化對苯二胺水溶液……………….
23
3-2-7 重複使用二氧化鈦包覆磁性PMMA微球進行光催化對苯二胺水溶液(multi-run)….......................
23
3-2-7 磁性PMMA微球官能基化反應………………… 24
3-3 實驗儀器…………….………………………….... 25
第四章 結果與討論…………........……………..…….. 28
4-1 磁性PMMA微球之特性分析……...……………. 28
4-1-1 掃描式電子顯微鏡圖像分析………...………….. 28
4-1-2 粒徑分佈………………………………….……… 28
4-1-3 穿透式電子顯微鏡圖像分析……………………. 29
4-1-4 無機物組成鑑定…………………………….…… 29
4-1-5 無機物含量分析…………….……………….…... 29
4-1-6 磁滯曲線之探討……………………..…………... 31
4-1-7 溶出試驗…………………………………………. 32
4-1-8 產率………………………………………………. 32
4-1-9 二氧化鈦包覆磁性PMMA微球的表面型態鑑定 32
4-2 光催化對苯二胺之探討…………..……………... 34
4-2-1 檢量線…………………………………………..... 34
4-2-2 不同光催化條件下之探討………………………. 34
4-2-3 光催化對苯二胺水溶液之動力學探討…………. 36
4-2-4 二氧化鈦包覆磁性PMMA微球的磁性性質與二氧化鈦含量之探討……………………………….
37
4-3 磁性PMMA微球官能基化結構鑑定…………… 39
4-3-1 傅立葉轉換紅外光譜圖之分析…………………. 39
4-3-2 化學分析電子光譜圖之分析…………………… 39

第五章 結論…………........………….…..……………… 40

參考文獻 107
附錄A LEWATIT® TP207與SP112離子交換樹脂應用於銦錫氧化物中銦貴金屬回收之研究………….
112
附錄B Standard calibration curve of In3+……………..….. 131
附錄C UV光強度的量測值 132

















表 目 錄
Table 2-1-1 The structures of iron oxides...……………...….…... 42
Table 2-2-1 Comparison of various polymerization methods..…. 43
Table 3-1-1 Characterization of a commercial titanium dioxide... 44
Table 3-2-1 The experimental condition of different weight ratios with oleic acid to magnetite in preparation of OMP………………………………………………...

45
Table 3-2-2 The experimental condition of different weight ratios with MMA to OMP in preparation of magnetic PMMA microspheres……………………..

46
Table 4-1-1 Magnetic properties of OMP and magnetic PMMA microspheres……………………………………...…
47
Table 4-2-1 Comparison of pH value of the mineralization of p-phenylenediamine with different experimental conditions…………………………......…………….

48
Table 4-2-2 Values of the initial rate (r0) under different experimental conditions for the photodecomposition of PPD with TiO2-coated magnetic PMMA microspheres………………………………………...


49
Table 4-2-3 Comparison of kB and KB values for different pollutants in literatures……………………………...
50
Table 4-2-4 Values of kCOD under different experimental conditions…………………………………………...
51

Table 4-2-5 Value of kCOD obtained from multi-run experiments. CBLb0 = 50 mg/L, Wcat = 1 g/L, [I254] = 0.174 W/L.…
52




















圖 目 錄
Fig. 1-2-1 Flow diagram of this research……………..…..….... 53
Fig. 2-1-1 (a) The magnetic moment of paramagnetic, (b) 1/χ-T diagram of paramagnetic………………………...
54
Fig. 2-1-2 (a) The magnetic moment of ferromagnetism, (b) 1/χ-T diagram of ferromagnetism……………….
55
Fig. 2-1-3 (a)The magnetic moment of antiferromagnetism, (b) 1/χ-T diagram of antiferromagnetism………………
56
Fig. 2-1-4 (a)The magnetic moment of diamagnetism, (b) 1/χ-T diagram of diamagnetism…………………….
57
Fig. 2-1-5 Schematic diagram of the hysteresis curve.………... 58
Fig. 2-1-6 Effect of various particle size with magnetic domains……………………………………………..
59
Fig. 2-1-7 Adsorbed mechanism of oleic acid on the surface of magnetite……………………………………………
60
Fig. 2-1-8 Possible mechanism of magnetic Fe3O4 gel dispersed in polar and nonpolar solvent…………….
61
Fig. 2-2-1 Schematic diagram of spraying suspension polymerization……………………………………....
62
Fig. 2-3-1 The crystal form of (a) anatase, (b) rutile…………... 63
Fig. 2-3-2 Array of TiO6 octahedron for (a)anatase,(b)rutile…. 64
Fig. 2-3-3 Hypothetical photocatalytic reactions occurring upon UV irradiation with TiO2. Note: A and •A represents acceptor molecules before and after reduction (for e.g., O2 and •O2-). D and •D represents donor molecules before and after oxidation, respectively (for e.g., OH− and •OH)………………..




65

Fig. 3-1-1 Schematic diagram of experimental system for preparation of the oleic acid-coated magnetite particles (OMP)………………………….…...……..

66
Fig. 3-1-2 Schematic diagram of experimental system for preparation of magnetic PMMA microspheres……..
67
Fig. 3-2-1 Schematic diagram of experimental system for modification of magnetic PMMA microspheres with ethylenediamine (EDA)……………………………..

68
Fig. 4-1-1 SEM images of magnetic PMMA microspheres (× 3000) with various weight ratios of OMP/MMA of (a) 0.263, (b) 0.158, (c) 0.105 and (d) 0.0526………

69
Fig. 4-1-2 Histograms of particle size distributions of magnetic PMMA microspheres with various weight ratios of OMP/MMA of (a) 0.263, (b) 0.158, (c) 0.105 and (d) 0.0526…………………………………………...


70
Fig. 4-1-3 Variations of particles diameter (symbol ○)and magnetite content (symbol △)of magnetic PMMA microspheres with weight ratios of OMP/MMA……

71
Fig. 4-1-4 TEM images of OMP and microtomed magnetic PMMA microspheres (dark regions represent the OMP imbedded in PMMA microspheres). (a) OMP with weight ratio of oleic acid/magnetite of 1.3 (× 250K); (b) Microtomed magnetic PMMA microspheres with weight ratio of OMP/MMA of 0.158 (× 100K)……………………………………...





72



Fig. 4-1-5 WAXD patterns of OMP and magnetic PMMA microspheres. (a) OMP with weight ratio of oleic acid/magnetite of 1.3; (b) Magnetic PMMA microspheres with weight ratio of OMP/MMA of 0.158; (c) Standard WAXD pattern of Fe3O4.……....



73
Fig. 4-1-6 TGA curves of OMP with various weight ratios of oleic acid/magnetite of 0.44 (– – –), 0.89 (…) and 1.3 (– • –). Magnetite ( ); oleic acid (– •• –)……


74
Fig. 4-1-7 TGA curves of magnetic PMMA microspheres with various weight ratios of OMP/MMA of 0.263 ( ), 0.158 (– – –), 0.105 (…) and 0.0526 (– • –). The PMMA microspheres with non magnetic of (– • •)….


75
Fig. 4-1-8 Hysteresis curves of OMP measured by SQUID. (a) OMP with various weight ratios of oleic acid/magnetite of 0.44 (□), 0.89 (△) and 1.3 (◇). magnetite (○)………………………………………


76
Fig. 4-1-9 Hysteresis curves of magnetic PMMA microspheres measured by SQUID. Magnetic PMMA microspheres with various weight ratios of OMP/MMA of 0.263 (○), 0.158 (□), 0.105 (△) and 0.0526 (◇)……………………………………..



77
Fig. 4-1-10 Variation of Ms with magnetite content for OMP and magnetic PMMA microspheres…………...……
78
Fig. 4-1-11 Dissolution percentage of encapsulated OMP of magnetic PMMA microspheres with pH. Magnetic PMMA microspheres with weight ratio of OMP/MMA of 0.158.……………………………….


79
Fig. 4-1-12 Yields of magnetic PMMA microspheres on different weight ratios of OMP/MMA……………...
80
Fig. 4-1-13 SEM/EDS images of magnetic PMMA microspheres with weight ratio of OMP/MMA of 0.158 (× 10K)……………………………………….

81
Fig. 4-1-14 SEM/EDS images of TiO2-coated magnetic PMMA microspheres (× 10K)……………………………….
82
Fig. 4-1-15 TEM images of microtomed TiO2-coated magnetic PMMA microspheres with the amplification of (a) 6K, (b) 10K…………………………………………

83
Fig. 4-2-1 Ultraviolet/Visible absorption spectra (arbitrary units) of p-phenylenediamine (PPD)………………..
84
Fig. 4-2-2 HPLC chromatogram image of p-phenylenediamine. Detector: UV. λ = 238 nm.......................................
85
Fig. 4-2-3 Standard calibration curve of p-phenylenediamine by HPLC. r2 = 0.998………………………………
86
Fig. 4-2-4 Variations of CBLb/CBLb0 with time for the hydrolysis of PPD at different temperatures. CBLb0 = 50 mg/L, Wcat = 0 g/L, [I] = 0 W/L. Lines: prediction. ○ and △: temperatures = 4, 25oC; R2 = 0.995, 0.982.…......................................................................



87
Fig. 4-2-5 Variations of CBLb/CBLb0 with time for the photodecomposition of PPD with different Wcat. △, □, ○, and ◇: Wcat = 0, 0.4, 1, and 2.5 g/L. CBLb0 = 50 mg/L, [I254] = 0.174 W/L...……………...


88



Fig. 4-2-6 Variations of CCOD/CCOD0 with time for the photodecomposition of PPD with different Wcat. Notations and experimental conditions are the same as specified in Fig. 4-2-5. Lines: prediction. □, ○, and ◇: R2 = 0.992, 0.993, 0.982……………….



89
Fig. 4-2-7 Variations of CBLb/CBLb0 with time for the photodecomposition of PPD with different CBLb0. △, □, ○, and ◇: CBLb0 = 3.5, 10, 50, and 332 mg/L. Wcat = 1 g/L, [I254] = 0.174 W/L...................


90
Fig. 4-2-8 Variations of CCOD/CCOD0 with time for the photodecomposition of PPD with different CBLb0. Notations and experimental conditions are the same as specified in Fig. 4-2-7. Lines: prediction. ○ and ◇: R2 = 0.993, 0.861……..................................



91
Fig. 4-2-9 Variations of CBLb/CBLb0 with time for the photodecomposition of PPD under different illumination conditions. ○: [I254] = 0.174 W/L; △: [I254] = 0.0889 W/L; □: [I365] = 0.439 W/L; ▽: adsorption only ([I] = 0 W/L). CBLb0 = 50 mg/L, Wcat = 1 g/L.………………………………………...




92
Fig. 4-2-10 Variations of CCOD/CCOD0 with time for the photodecomposition of PPD with different [I254]. Notations and experimental conditions are the same as specified in Fig. 4-2-9. Lines: prediction. ○ and △: R2 = 0.993, 0.973…………………………..



93


Fig. 4-2-11 Variations of CBLb/CBLb0 with time for the photodecomposition of PPD in multi-run experiments. ○, △, □, and ◇: 1st, 3rd, 4th, and 5th run. CBLb0 = 50 mg/L, Wcat = 1 g/L, [I254] = 0.174 W/L.…………………………………………..



94
Fig. 4-2-12 Variations of CCOD/CCOD0 with time for the photodecomposition of PPD in multi-run experiments. Notations and experiments conditions are the same as specified in Fig. 4-2-11. Lines: prediction. ○, △, □, and ◇: R2 = 0.993, 0.964, 0.959, 0.961………………………………….




95
Fig. 4-2-13 Simpified scheme of photodecomposition pathways of PPD under illumination of UV radiation with TiO2-coated magnetic PMMA microspheres……….

96
Fig. 4-2-14 Variations of CBLb/CBLb0 with time for the ozonation of PPD. ○: O3 only, △: O3/UV with [I254] = 0.174 W/L, □: O3/UV with [I254] = 0.174 W/L and Wcat = 1 g/L. CAGi0 = 13.5 mg/L. QL = 1.95 L/min………………………………………………..



97
Fig. 4-2-15 Variations of CCOD/CCOD0 with time for the ozonation of PPD. Notations and experimental conditions are the same as specified in Fig. 4-2-14...

98






Fig. 4-2-16 ηCOD vs. ηBLb for the photodecomposition of PPD. ▽: CBLb0 = 50 mg/L, Wcat = 1 g/L, [I254] = 0.0889 W/L. ▲: CBLb0 = 10 mg/L, Wcat = 1 g/L, [I254] = 0.174 W/L. ■: CBLb0 = 332 mg/L, Wcat = 1 g/L, [I254] = 0.174 W/L. Other notations and experimental conditions are the same as specified in Fig. 4-2-5……………………………………………





99
Fig. 4-2-17 ηCOD vs. ηBLb for the photodecomposition of PPD in multi-run experiments. Notations and experimental conditions are the same as specified in Fig. 4-2-11. Average and smooth curve of experimental data with R2 = 0.975………………….



100
Fig. 4-2-18 ηCOD vs. ηBLb for the ozonation of PPD. Notations and experimental conditions are the same as specified in Fig. 4-2-14.…………………………….

101
Fig. 4-2-19 Variations of initial rate (r0) as a function of initial concentration (CBLb0) for the photodecomposition of PPD with TiO2-coated magnetic PMMA microspheres. [I254] = 0.174 W/L. 1/r0 = 21.1/CBLb0 + 0.159; r2 = 0.985.……………………...



102
Fig. 4-2-20 Hysteresis curves of TiO2-coated magnetic PMMA microspheres after different successive experiments of (△) 1st and (□) 5th. ◇: Magnetic PMMA microspheres with weight ratio of OMP/MMA of 0.158. ○: new TiO2-coated magnetic PMMA microspheres………………………………………...




103


Fig. 4-2-21 The percentages of residual mass obtained from TGA curves for TiO2-coated magnetic PMMA microspheres after different successive experiments.………………………………………...


104
Fig. 4-3-1 FTIR spectra of magnetic PMMA microspheres. (a) original; (b) modified with EDA functional group………………………………………………...

105
Fig. 4-3-2 ESCA N 1s spectra of magnetic PMMA microspheres. (a) original, (b) modified with EDA functional group…………………………………….

106
參考文獻
[1] 下飯阪達,粉體液相中凝集分散,粉體粉末冶金,(1966)。
[2] 陳澄佑,磁性流體的研製,國立清華大學碩士論文,(1993)。
[3] 莊萬發,超微粒子理論應用,復漢出版社,(1994)。
[4] 吳紀聖,以溶膠-凝膠法製備二氧化鈦觸媒及其性質鑑定,國立臺灣大學碩士論文,(1999)。
[5] 陳威倩,以γ→α-Fe2O3相變機制製作alpha-Fe2O3微粒,國立成功大學碩士論文,(2001)。
[6] 吳昇峰,逆微乳化方式製造磁性奈米粒子之研究,國立成功大學碩士論文,(2004)。
[7] 李家瑋,γ-Fe2O3奈米粒子的表面修飾及其生化上的應用,國立成功大學碩士論文,(2004)。
[8] 陳珮紋,利用Fe3O4磁性顆粒處理化學機械研磨廢水,國立中央大學碩士論文,(2004)。
[9] 林彥宏,Fe3O4-SiO2奈米核-殼結構粒子的製備與磁性研究,東海大學碩士論文,(2004)。
[10] 張晶、楊健 譯,光觸媒圖解:蘊含兆億商機的化學反應,商周出版,(2004)。
[11] 官月平,超順磁性聚合物納米載體的合成、表徵及生物親和分離應用研究,中國科學院博士論文,(2004)。
[12] Ames, B.N., Kammen, H.O., and Yamasaki, A.E., Proceedings of the National Academy of Sciences of the United States of America, 72, 2423–2427 (1975).
[13] Arıca, M.Y., and Bayramoğlu, G., Journal of Molecular Catalysis B: Enzymatic, 38, 131–138 (2006).
[14] Augugliaro, V., López-Muñoz, M.J., Palmisano, L., and Soria, J., Applied Catalysis A: General, 101, 7-13 (1993).
[15] Burnett, C.M., Food and Chemical Toxicology, 26, 467–474 (1988).
[16] Cocker, T.M., Fee, C.J. and Evans, R.A., Biotechnology and Bioengineering, 53, 79-87 (1997).
[17] Dahlke, T., Chen, Y.H., Franzreb, M., and Höll, W.H., Reactive and Functional Polymers, 66, 1062-1072 (2006).
[18] Dresco, P.A., Zaitsev, V.S., Gambino, R.J., and Chu, B., Langmuir, 15, 1945-1951 (1999).
[19] Evgenidou, E., Fytianos, K., and Poulios, I., Journal of Photochemistry and Photobiology A: Chemistry, 175, 29-38 (2005).
[20] Furusawa, K., Nagashima, K., and Anzai, C., Colloid and Polymer Science, 272, 1104-1110 (1994).
[21] Fujishima, A., and Honda, K., Nature, 238, 37-37 (1972).
[22] Fujishima, A., and Kohayakawa, K., Journal of the Electrochemical Society, 122, 1487-1489 (1975).
[23] Fujishima, A., Kohayakawa, K., and Honda, K., Bulletin of the Chemical Society of Japan, 48, 1041-1042 (1975).
[24] Garcia, III.A., Oh, S., and Engler, C.R., Biotechnology and Bioengineering, 33, 321-326 (1989).
[25] Goetz, V., Remaud, M., and Graves, D.J., Biotechnology and Bioengineering, 37, 614-626 (1991).
[26] Goto, M., Imamura, T., and Hirose, T., Journal of Chromatography A, 690, 1-8 (1995).
[27] Gribanov, M., Bibik, E.E., Buzunov, O.V., and Naumov, V.N., Journal of Magnetism and Magnetic Materials, 85, 7-10 (1990).
[28] Gupta, H., and Tanaka, S., Water Science and Technology, 32, 47-54 (1995).
[29] Hofer, H., Bonnatowicz, N., and Reinde, E., Food and Chemical Toxicology, 21, 785–789 (1983).
[30] Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Chemical Reviews, 95, 69-96 (1995).
[31] Horak, D., Journal of Polymer Science: Part A: Polymer Chemistry, 39, 3707–3715 (2001).
[32] Iangphasuk, M., and Reutergardh, L.B., Chemosphere, 35, 585-596 (1997).
[33] Jain, C.K., and Ali, I., Hydrological Processes, 14, 261-270 (2000).
[34] Kaur, S., and Singh, V., Journal of Hazardous Materials, 141, 230-236 (2007).
[35] Khalafalla, S. E., and Reimers, G.W., IEEE Transactions on Magnetics, 16, 178-183 (1980).
[36] Klabunde, K.J., Nanoscale Materials in Chemistry, Wiley, (2001).
[37] Krishna, V., Noguchi, N., Koopman, B., and Moudgil, B., Journal of Colloid and Interface Science, 304, 166–171 (2006).
[38] Landfester, K., and Ramírez, L.P., Journal of Physics: Condensed Matter, 15, S1345-S1361 (2003).
[39] Lee, Y., Rho, J., and Jung, B., Journal of Applied Polymer Science, 89, 2058–2067 (2003).
[40] Liu, X., Guan, Y., Liu, H., Ma, Z., Yang Y., and Wu, X., Journal of Magnetism and Magnetic Materials, 293, 111-118 (2005).
[41] Liu, X., Kaminski, M.K., Guan, Y., Chen, H., Liu, H., and Rosengart, A.J., Journal of Magnetism and Magnetic Materials, 306, 248–253 (2006).
[42] Liu, Z.L., Ding, Z.H., Yao, K.L., Tao, J., Du, G.H., Lu, Q.H., Wang, X., Gong, F.L., and Chen, X., Journal of Magnetism and Magnetic Materials, 265, 98–105 (2003).
[43] Ma, Z., Guan, Y., Liu, X., and Liu, H., Polymers for Advanced Technologies, 16, 554–558 (2005).
[44] Ma, Z.Y., Guan, Y.P., Liu, X.Q., and Liu, H.Z., Langmuir, 21, 6987-6994 (2005).
[45] Ma, Z.Y., Guan, Y.P., Liu, X.Q., and Liu, H.Z., Journal of Applied Polymer Science, 96, 2174-2180 (2005).
[46] Maekawa, T., and Kuroshima, M., U.S Patent, 6,043,068 (2000).
[47] Matthews, R.W., Journal of Physical Chemistry, 91, 3328-3333 (1987a).
[48] Matthews, R.W., Solar Energy, 38, 405-413 (1987b).
[49] Matthews, R.W., Journal of the Chemical Society-Faraday Transactions, 85 1291-1302 (1989).
[50] Menager, C., and Cabuil, V., Journal of Colloid and Interface Science, 169, 251-253 (1995).
[51] Molday, R.S. and Vancouver, U.S Patent, 4,452,773, (1984).

[52] Ninjbadgar, T., Shinpei, Y., and Takeshi, F., Solid State Sciences, 6, 879-885 (2004).
[53] Ohko, Y., Hashimoto, K., and Fujishima, A., Journal of Physical Chemistry A, 101, 8057-8062 (1997).
[54] Olivares-Xometl, O., Likhanova, N.V., Dominguez-Aguilar, M.A., Hallen, J.M., Zamudio, L.S., and Arce, E., Applied Surface Science, 252, 2139-2152, (2006).
[55] Olsvik, Ø., Popovic, T., Skjerve, E., Cudjoe, K.S., Hornes, E., Ugelstad, J., and Uhlén, M., Clinical Microbiology Reviews, 7, 43-54 (1994).
[56] Piga, L., Pochetti, F., and Stoppa, L., Thermochimica Acta, 254, 337-345 (1995).
[57] Raillard, C., Héquet, V., Le Cloirec, P., and Legrand, J., Journal of Photochemistry and Photobiology A: Chemistry, 163, 425-431 (2004).
[58] Rodulfo-Baechler, S.M., Gonzalez-Cortes, S.L., Orozco, J., Sagredo, V., Fontal, B., Mora, A.J., Delgado, G., Materials. Letters, 58, 2447-2450 (2004).
[59] Shen, L.F., Labinis, P.E., and Hatton, T.A., Langmuir, 15, 447-453 (1999).
[60] Shinkai, M., Suzuki, M., Iijima, S., and Kobayashi, T., Biotechnology and Applied Biochemistry, 21, 125-137 (1994).
[61] Sivakumar, M., and Panduranga-Rao, K., Journal of Applied Polymer Science, 83, 3045-3054 (2002).
[62] Skoog, D.A., Holler, F.J., and Nieman, T.A., Pinciples of Instrumental Analysis, Harcourt College Publishers, (1998).
[63] Stefan, M., WO Patent, 90/07380 (1990).
[64] Suzuki, M., Shinkai, M., Kamihira, M. and Kobayashi, T., Biotechnology and Applied Biochemistry, 21, 335-345 (1995).
[65] Tachon, P., Cotovio, J., Dossou, K.G., Prunieras, M., Journal of Cosmetic. Science, 8, 265–273 (1986).
[66] Takeda, K., and Fujiwara, K., Water Research, 30, 323-330 (1996).
[67] Tanguay, J.F., Suib S.L., and Coughlin, R.W., Journal of Catalysis, 117, 335-347 (1989).
[68] Ugelstad, J., Stenstad, P., and Kilaas, L., Blood Purification, 11, 349-369 (1993).
[69] Valente, J.P.S., Padilha, P.M., and Florentino, A.O., Chemosphere, 64, 1128-1133 (2006).
[70] Villaescusa, I., Martinez, M., and Miralles, N., Journal of Chemical Technology and Biotechnology, 78, 812-816 (2000).
[71] Wang, C.C., Chen, C.Y. and Chang, C.Y., Journal of Applied Polymer Science, 84, 1353-1362 (2002).
[72] Wenhua, L., Liu, H., Cheng, S., Zhang, J., and Cao, C., Journal of Photochemistry and Photobiology A: Chemistry, 131, 125-132 (2000).
[73] Wilson, R., Archives of Dermatological Research, 278, 165–170 (1985).
[74] Yamashita, H., Nishiguchi, H., Kamada N., and Anpo, M., Research on Chemical Intermediates, 20, 815-823 (1994).
[75] Yang, C., Liu, H., Guan, Y., Xing, J., Liu, J., and Shan, G., Journal of Magnetism and Magnetic Materials, 293, 187–192 (2005).
[76] Yang, C., Guan Y., Xing J., and Liu, H., Polymer, 47, 2299–2304 (2006).
[77] Yang, C., Xing, J., Guan Y., and Liu, H., Applied Microbiology and Biotechnology, 72, 616–622 (2006).
[78] Zaitsev, V.S., Filimonov, D.S., Presnyakov, I.A., Gambino, R.J. and Chu, B., Journal of Colloid and Interface Science, 212, 49-57 (1999).
[79] Zheng, W., Gao, F., and Gu, H., Journal of Magnetism and Magnetic Materials, 288, 403-410 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top