跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡文斌
研究生(外文):Wen-Pin Tsai
論文名稱:以複製選擇演算法設計二維數位濾波器
論文名稱(外文):Clonal Selection Algorithm for 2-D Digital Filters Design
指導教授:蘇德仁蘇德仁引用關係
指導教授(外文):Te-Jen Su
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:複製選擇演算法二維數位濾波器奇異值分解
外文關鍵詞:Clonal Selection Algorithm2-D Digital FilterSingular Value Decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以複製選擇演算法(Clonal Selection Algorithm, CSA)設計二維數位濾波器(Two-Dimensional Digital Filters)。主要是經由複製選擇演算法中強大的四種機制:倍化(Reproduce)、突變(Mutation)、再選(Reselection)、重置(Replace),藉著一連串的驗證、搜尋與比較,完成工程上最佳化的尋優問題。本演算法的優點為避免陷入區域性最佳解(Local Best)的可能以及快速地收斂。
本論文以此複製選擇演算法,結合頻率取樣法(Frequency Sampling Method),對二維數位濾波器的轉移帶(Transition-band)頻率作最佳化的取樣,產生一個二維平面響應矩陣,設計二維FIR數位濾波器。並引入奇異值分解,將二維數位濾波器的頻率響應分解成兩個一維數位濾波器的響應,再經由排列疊合(cascade)的方法組成二維IIR數位濾波器。設計出來的低通(Low-pass)、高通(High-pass)、與帶通(Band-pass)濾波器,其效能與知名的設計方法所設計出來的濾波器相比,皆有優良的表現。
In this thesis, Clonal Selection Algorithm (CSA) to design the 2-D digital filters is introduced. By the four strong mechanisms in CSA: Reproduce、Mutation、Reselection、and Replace, the optimization solutions is obtained on the procedure via a succession of verification, searching and comparing. The advantage of CSA is to lower the possibility of Clonal Selection Algorithm which falls into the global best solutions, and speeds up the convergence.
In this thesis, we use Clonal Selection Algorithm with frequency sampling method (FSM) is applied to optimize the sampled frequencies of transition band, then producing a planar response matrix to design 2-D FIR digital filters. Through introducing Singular Value Decomposition, a 2-D filter frequency response is decomposed into two 1-D filter frequency response. We can cascade two 1-D filters to construct a 2-D IIR filter very well. The performance of Low-pass, High-pass, and Band-pass filters, designed is better than those designed by well-known method design, respectively.
Abstract in Chinese i
Abstract ii
Acknowledgements iii
Contents iv
List of Tables vi List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Brief Sketch of the Thesis 3
Chapter 2 Clonal Selection Algorithm 4
2.1 Biological Immune Mechanism 4
2.2 Artificial Immune System 10
2.3 Clonal Selection Algorithm 11
2.4 Compare Clonal Selection Algorithm with Problem 16
Chapter 3 Multi-Objective Function Optimizations by CSA 17
3.1 Introduction 17
3.2 Pareto Optimal 18
3.3 Multiple Objective Functions 21
Chapter 4 2-D FIR Filters Design 27
4.1 Introduction 27
4.2 Frequency Sampling Method 31
4.3 Window Method 33
4.4 Chebyshev Sampling Method 34
4.5 CSA Design Method 35
4.5.1 2-D Lowpass FIR Filter Design 36
4.5.2 2-D Highpass FIR Filter Design 38
4.5.3 2-D Bandpass FIR Filter Design 40
4.6 Simulation Results and Comparisons 42
Chapter 5 2-D IIR Design 44
5.1 Introduction 44
5.2 Singular Value Decomposition 45
5.3 CSA Design Method 47
5.3.1 2-D Lowpass IIR Filter Design 47
5.3.2 2-D Highpass IIR Filter Design 50
5.3.3 2-D Bandpass IIR Filter Design 53
Chapter 6 Conclusions 55
References 56
List of Publications 62
Biography 63
References

[1]A Body Article: Immune System, “http://kidshealth.org/PageManager.jsp?dn=KidsHealth&lic=1&article_set=20542&cat_id=20090&”.
[2]Adnan A., “Clonal Selection Algorithm with Operator Multiplicity,” Congress on Evolutionary Computation (CEC), Vol. 2, 19~23 June 2004, pp.1909-1915.
[3]Kerkhoff A.J., and Hao Ling, “Design of a Band-Notched Planar Monopole Antenna Using Genetic Algorithm Optimization,” IEEE Transactions on Antennas and Propagation, Vol. 55, Issue 3, Part 1, March 2007, pp.604-610.
[4]Jiang-qing Wang, Jun Qin, and Li-shan Kang, “A New Dynamic Multicast Routing Model and its Immune Optimization Algorithm in Integrated Network,” International Workshop on Networking, Architecture, and Storages (NAS), 1~3 August 2006, pp.53-54.
[5]Smith R., Forrest S., and Perelson A.S., “Searching for Diverse, Cooperative Populations with Genetic Algorithms,” Evolutionary Computation, Vol. 1, No. 2, 1993, pp. 127-149.
[6]Chi-Tsong C., “Digital Signal Processing: Spectral Computation and Filter Design,” New York, Oxford, Oxford University Press, 2001.
[7]Fukuda T., Mori K., and Tsukiama M., “Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm,” In (Ed.) D. Dasgupta, Artificial Immune Systems and Their Applications, Springer-Verlag, 1999, pp. 210-220.
[8]Chun J.S., Jung H.K., and Hahn S.Y., “A Study on Comparison of Optimization Performances between Immune Algorithm and other Heuristic Algorithm,” IEEE Transactions on Magnetics, Vol. 34, No. 5, 1998, pp.2972-2975.
[9]De Castro L.N. and Von Zuben F.J., “The Clonal Selection Algorithm with Engineering Applications,” Genetic and Evolutionary Computation Conference (GECCO) Workshop Proceedings, 2000, pp.36-37.
[10]De Castro L.N. and Von Zuben F.J., “Artificial Immune Systems: Part I- Basic Theory and Applications,” Technical Report, TR-DCA 01/99, December 1999.
[11]De Castro L.N. and Von Zuben F.J., “Artificial Immune Systems: Part II- A Survey of Applications,” Technical Report, TR-DCA 02/00, February 2000.
[12]De Castro L.N. and Von Zuben F.J., “Learning and Optimization Using the Clonal Selection Principle,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 3, 2002, pp.239-251.
[13]Yan Gao and Yaoguang Wei, “Research of an Artificial Immune Algorithm and Its application in Function Optimization,” International Conference on Neural Networks and Brain (ICNN&B), Vol. 3, 13~15 October 2005, pp.1399-1402.
[14]Nanbo Jin and Rahmat-Samii Y., “Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multi-objective Implementations,” IEEE Transactions on Antennas and Propagation, Vol. 55, Issue 3, Part 1, March 2007, pp.556-567.
[15]Handl J., Douglas B. Kell, and Joshua K., “Multiobjective Optimization in Bioinformatics and Computational Biology,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 4, Issue 2, June 2007, pp.279-292.
[16]Coello Coello C.A., “Evolutionary multi-objective optimization: a historical view of the field,” Computational Intelligence Magazine, Vol. 1, Issue 1, February 2006, pp.28-36.
[17]Pereira-Arroyo R., Alvarado-Moya P., and Krautschneider W.H., “Design of a MCML Gate Library Applying Multiobjective Optimization,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI '07), March 2007, pp.81-85.
[18]Chin-Chiang Ku and Chun-Yin Wu, “Multimodal Topology Optimization of Structure Using Distributed Artificial Immune Algorithm,” Thesis for Master of Science Department of Mechanical Engineering Tatung University, June 2004.
[19]Ching-bin Zhang and Chun-Yin Wu, “Optimization of Heat Sink Using Distributed Artificial Immune Algorithms,” Thesis for Master of Science Department of Mechanical Engineering Tatung University, June 2004.
[20]Guang-Xing Tan and Zong-Yuan Mao, “Study on Pareto Front of Multi-Objective Optimization Using Immune Algorithm,” Proceedings of International Conference on Machine Learning and Cybernetics, Vol. 5, 18~21 August 2005, pp.2923-2928.
[21]Lin F. and He G., “An Improved Genetic Algorithm for Multi-Objective Optimization,” Parallel and Distributed Computing, Applications and Technologies, December 2005, pp. 938 – 940.
[22]Angelidis E., “Frequency Sampling Design of 2-D Quadrantally Symmetric FIR Filters by 2-D Block Decomposition Technique,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 43, Issue 5, May 1996, pp.401-405.
[23]Angelidis E., “A recursive frequency-sampling method for designing zero-phase FIR filters by nonuniform samples,” IEEE Transactions on Signal Processing, Vol. 43, Issue 6, June 1995, pp.1461-1467.
[24]Lim J.S., “Two-dimensional signal and image processing,” A paramount Communications Company, Englewood Cliffs, New Jersey 07632, 1990.
[25]Nakamura S., “Numerical analysis and graphic visualization with MATLAB,” Prentice-Hall, Inc., 2002.
[26]Tsz-Shiau Shen and Tong-Yi Guo, “Design 2-D Digital Filter Using Non-Equally-Space sampled Frequencies,” Thesis for Master of Electrical Engineering National Kaohsiung University Applied Sciences, May 2004.
[27]Monson H. Hayes, “Statistical digital signal processing and modeling,” John Wiley & Sons, Inc., 1996.
[28]Safiri H., Ahmadi M., “An efficient design of 2-D IIR digital filters using singular value decomposition,” Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, Vol. 1, 31 October~2 November 1994, pp.344-348.
[29]Deng T.-B. and Kawamata M., “Frequency-domain design of 2-D digital filters using the iterative singular value decomposition,” IEEE Transactions on Circuits and Systems, Vol. 38, Issue 10, October 1991, pp.1225-1228.
[30]Williams T., Ahmadi M., and Miller W.C., “High Throughput Rate 2-D Fir Filter Design Using Singular Value Decomposition and Genetic Algorithms,” Fifth International Conference on Information, Communications and Signal Processing, 06~09 December 2005, pp.574-578.
[31]Wei-Ping Zhu, Ahmad M.O., and Swamy M.N.S., “Realization of general 2-D linear-phase FIR filters using singular-value decomposition,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS '98), Vol. 5, 31 May~3 June 1998, pp.49-52.
[32]Guoya Dong, Ying Zhou, Zhiliang Qiu, and Weili Yan, “RBF Network Based on Artificial Immune Algorithm for Regional Head Conductivity Estimation,” Engineering in Medicine and Biology Society (EMBS'06), August 2006, pp.2470-2473.
[33]Chafekar D., Liang Shi, Rasheed K., and Jiang Xuan, “Multiobjective GA optimization using reduced models,” IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, Vol. 35, Issue 2, May 2005, pp.261-265.
[34]Dasheng Liu, Goh C.K., Ho W.K., and Tan K.C., “A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 37, Issue 1, February 2007, pp.42-50.
[35]Wang G., Gong W., DeRenzi B., and Kastner R., “Ant Colony Optimizations for Resource- and Timing-Constrained Operation Scheduling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, Issue 6, June 2007, pp.1010-1029.
[36]Garrett S.M., “Parameter-free, adaptive clonal selection,” Congress on Evolutionary Computation (CEC), Vol. 1, 19~23 June 2004, pp.1052-1058.
[37]Ma Jie, Gao Hong-yuan, and Diao Ming, “Multiuser Detection Using the Clonal Selection Algorithm and Hopfield Neural Network,” International Conference on Communications, Circuits and Systems Proceedings, Vol. 2, June 2006, pp.739-743.
[38]Qiaoling Wang and Gao X.Z., “A Hybrid Optimization Algorithm based on Clonal Selection Principle and Particle Swarm Intelligence,” Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06). Vol. 2, October 2006, pp.975-979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文