跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家榮
研究生(外文):JIA-RONG SYU
論文名稱:交流厚膜電激發光元件之等效電路與亮度預估之方法
論文名稱(外文):Equivalent Circuit Model And Luminance Estimation Of Alternating- Current Thick-Film Electroluminescent Device
指導教授:詹正義詹正義引用關係施天從
指導教授(外文):Jen-Yea JanTien-Tsorng Shih
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:厚膜電激發光元件厚膜電激發光亮度預估介電層發光層
外文關鍵詞:electroluminanceelectroluminance display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出交流厚膜電激發光元件之等效電路模型及其各項參數的求法,並配合實驗及Sawyer-Tower circuit量測,得到發光層的亮度-電荷關係之後,即可針對採用不同介電層材料的電激發光元件預估其電壓發光特性。由理論及實驗結果發現,元件發光亮度與通過發光層的電荷成線性相依關係,經試製完成的電激發光元件,理論與實驗發光亮度誤差最大在10%內,證明等效電路模型的正確性。另由等效電路模型推算,發現當介電層電容增加時,其通過發光層的電荷並不會等比例增加而有飽和現象,因此導致亮度不再明顯增加。以試製的2cm×2cm電激發光元件為例,當介電層電容等於10nF時,電荷飽和度已達90%以上,此時再增加介電層電容提高元件發光亮度的作法將不再有效。
另外為提高元件發光效率及讓顏色產生改變,我們將發光粉掺入D-YAG粉末,利用D-YAG粉末吸收藍綠光或藍光而發射出綠光的特性,使元件的發光波長範圍往人類眼睛敏感的綠光移動,進而提高人眼感知的發光亮度。實驗結果證實在150V、400Hz的交流電壓驅動下,採用GG24發光粉的元件,其發光的CIE色座標由(0.16 , 0.36)變成(0.20 , 0.43),使發光效率增加10%;而採用GG64發光粉的元件,其發光的CIE色座標由(0.158 , 0.197)變成(0.21 , 0.29),發光效率提高約20%。
In this thesis, we proposed an equivalent circuit model and measured various parameters of the alternating-current thick-film electro- luminescent device. Combined with the luminance-charge relation of the phosphor layer deduced by experiment and Sawyer-Tower circuit measurement, we can calculate and predict the voltage-luminance characteristics of the electroluminescent device with various dielectrics composition. Compared with the theoretical calculation and experimental result, the deviation is less than 20% and proves the validity of our proposed equivalent circuit model. Both theory and experimental results indicated that the luminance of the electroluminescent device is linear dependent with phosphor layer charges. However, phosphor layer charges do not proportional to the capacitance value of the dielectric layer. Charges will get saturation and induces the saturation of luminance of the device. For example, when we increases the capacitance of the dielectric layer to 10nF with a 2 cm × 2 cm sample, the phosphor layer charges will reach 90% of the saturation value. The luminance of the electro- luminescent device will be limited no matter what other dielectric materials and compositions are adopted.
In order to improve the luminance efficiency and drift the color, we doped D-YAG powder into the phosphor layer. The D-YAG powder would absorb blue and blue-green light and emit green light. It makes the emitting light of the electroluminescent device moving to the sensitive area of human eyes and enhanced the luminance. When operated at 150V and 400Hz of alternating-current voltage, the CIE coordinate shifted from (0.16, 0.36) to (0.20, 0.43) and the luminance efficiency increased 10% for the electroluminescent device composed by GG24 phosphor and D-YAG powder. By mixing the GG64 phosphor and D-YAG powder, the CIE coordinate of the electroluminescent device changed from (0.158, 0.197) to (0.21, 0.29) and the luminance efficiency increased 20%.
中文摘要 --------------------------------------------------------------------------- I
英文摘要 --------------------------------------------------------------------------- III
誌謝 --------------------------------------------------------------------------- V
目錄 --------------------------------------------------------------------------- VI
表目錄 --------------------------------------------------------------------------- VIII
圖目錄 --------------------------------------------------------------------------- IX
一、 緒論--------------------------------------------------------------------- 1
1.1 電激發光簡介--------------------------------------------------------- 2
1.2 電激發光元件的演進------------------------------------------------ 3
1.3 電激發光元件的優點與缺點--------------------------------------- 4
1.4 研究動機、目的與方法--------------------------------------------- 5
二、 理論基礎與文獻回顧------------------------------------------------ 14
2.1 電激發光元件結構--------------------------------------------------- 14
2.2 電激發光元件的等效電路------------------------------------------ 15
2.3 電激發光發光機制--------------------------------------------------- 15
2.3.1 直接撞擊激發與能量轉移模式------------------------------------ 16
三、 製程步驟與量測方法------------------------------------------------ 22
3.1 製程步驟--------------------------------------------------------------- 22
3.1.1 網版印刷機制--------------------------------------------------------- 22
3.1.2 實驗流程------------------------------------------ 23
3.2 材料備製--------------------------------------------------------------- 23
3.2.1 ITO塑膠導電薄膜切割與清洗------------------------------------- 23
3.2.2 材料種類與比例調配------------------------------------------------ 24
3.3 元件量測與等效電路理論計算------------------------------------ 24
3.3.1 介電層等效電容的求法--------------------------------------------- 25
3.3.2 發光層等效電容的求法--------------------------------------------- 27
3.3.3 發光轉換效率的量測------------------------------------------------ 28
3.4 發光粉加入D-YAG-------------------------------------------------- 29
四、 結果與討論------------------------------------------------------------ 38
4.1 電激發光元件量測--------------------------------------------------- 38
4.1.1 發光粉(GG24) 亮度特性曲線------------------------------------- 38
4.1.2 發光粉(GG64) 亮度特性曲線------------------------------------- 39
4.2 等效電路模型的計算------------------------------------------------ 40
4.2.1 絕緣層量測、發光層量測-------------------------------------------- 40
4.2.2 理論計算--------------------------------------------------------------- 41
4.3 實驗值與理論值比較------------------------------------------------ 41
4.4 利用等效電路模擬介電層電容的影響--------------------------- 42
4.5 掺入D-YAG螢光粉後波長漂移與效率的改善---------------- 43
五、 結論與未來展望------------------------------------------------------ 68
參考文獻 --------------------------------------------------------------------------- 71
[1]Alexey N. Krasnov, 2003, “Electroluminescent display : history and lessons learned,” Display, Vol.24, pp.73-79.
[2]Yoshimasa A. Ono, 1995, “Electroluminescent displays,”
[3]D. Kahng, Appl. Phys. Lett. 13(1968) 210
[4]R. L. Thuemler, P. D. Keir, and J. F. Wager, 1995, “Phosphor Field Dependence in ALE-Grown SrS:Ce ACTFEL Devices,” SID 95 DIGEST, pp.473-475.
[5]Bunjiro Tsujiyama, Yasuaki Tamura, Junichi Ohwaki and Haruki Kozawaguchi, 1986, “Bright-Blue Electroluminescent and Hysteresis Behavior in SrS:CeCl3 Thin Flims,” SID 86 DIGEST, pp.37-40.
[6]P. D. Keir, J. F. Wager, B. L. Clark, D. Li, and A. Keszler, 1999, “Alkali metal coactivators in SrS:Cu,F thin-film electroluminescent devices,” Appl. Phys. Lett., Vol.75, pp.1398-1400.
[7]Karen E. Waldrip, J. S. Lewis III, Q. Zhai, M. R. Davidson, P. H. Holloway, and S. S. Sun, 2000, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium choride,” Appl. Phys. Lett., Vol.76, pp.1276-1278.
[8]B. A. Baukol, J. C. Hitt, and J. F. Wager, 2001, “Electroluminescence thermal quenching in alternating-current thin-film electroluminescent devices,” JOURNAL OF AALIED PHYSICS, Vol.90, pp.2185-2190.
[9]Hideomi Ohnishi, and Tatsuhiko Okuda, 1989, “Blue-Green Color TFEL Device with Sputtered SrS:Ce Thin-Films,” SID 89 DIGEST, pp.317-320.
[10]J. Heikenfeld, and A. J. Steckl, “Low-Cost Display Technology Utilizing Thick Dielectric Electroluminescent (TDEL) Devices on Glass Substrates,” Extreme photonix LLC, Cincinnati Ohio, USA.
[11]Hiroshi Kobayashi, “Recent Progress and Problems in High Field Electroluminescent of Inorganic Materials,” SPIE, Vol.1910, pp.15-30.
[12]P. D. Rack, P. H. Holloway, L. Pham, J. Wager, S.-S. Sun, E. Dickey, and C. N. King, 1995, “Brighter Blue CaXSr1-XGa2S3:Ce EL Devices with an Electro Injection Layer,” SID 95 DIGEST, pp.480-483.
[13]T. Minami, S.Takata, Y. Kuroi, and T. Maeno, 1995, “New High-Luminance TFEL Devices Using ZnGa2O4 Phosphor Emitting Layers,” SID 95 DIGEST, pp.724-727.
[14]C. N. King, 1996, “Eectroluminescent displays,” J. Vac.Sci. Technol. American, Vol.14(3), Vpp.1729-1735.
[15]D. Keir, W. M. Ang, and J. F. Wager, 1995, “Modeling Space Change in ACTFEL Devices Using a Single-Sheet-Charge Model,” SID 95 DIGEST, pp.476-479.
[16]楊統貴, “電致能發光時鐘,” 中央大學碩士論文.


[17]James D. Davidson, John F. Wager, Ron I. Khormaei, Christopher N. King, and Richard Williams, 1992, “Electrical Characterization and Modeling of Alternating- Current Thin-Film Electroluminescent Devices,” IEEE, Vol.39, pp.1122-1128.
[18]E. Bringuier, “Impact excitation in ZnS-type electroluminescent,” 1991, J. Appl. Phys., Vol.70, pp.4505-4511.
[19]K. Streicher, T. K. Plant, and J. F. Wager, 1995, “Hot-electron impact excitation of ZnS:Tb alternating-current thin-film electroluminescent devices,” J. Apple. Phys., Vol.78, pp2101-2104.
[20]S. Shih, P. D. Keir, J. Hitt, and J. F. Wager, 1996, “Offset of the electrical characteristics of alternating-current thin-film electroluminescent devices,” Appl. Phys. Lett., Vol.69(13), pp.1921-1923.
[21]Martin Reigrotzki, Ronald Redmer, Insook Lee, Shankar S. Pennathur, Manfred Dur, John F. Wager, Peter Vogl, Harald Eckstein, and Wolfgang Schattke, 1996, “Impact ionization rate and high-field transport in ZnS with nonlocal band structure,” J. Appl. Phys., Vol.80(9), pp.5054-5060.
[22]W. M. Ang, S. Pennathur, L. Pham, J. F. Wager, and S. M. Goodnick, A. A. Douglas, 1995, “Evidence for band-to-band impact ionization in evaporated ZnS:Mn alternating-current thin-film electroluminescent devices,” J. Appl. Phys., Vol.77, pp.2719-2724.
[23]Yoshimasa A. ONO, Hideaki KAWAKAMI, Moriaki FUYAMAJ, and Kenichi ONISAWA, 1987, “Transferred Charge in the Active Layer and EL Device Characteristics of TFEL Cells,” Japanese Journal of Applied Physics, Vol.26, pp.1482-1492.
[24]A. Abu-Dayah, S. Kobayashi, and J. F. Wager, “Internal charge-phosphor field characteristics of alternating-current thin-film electroluminescent devices,” 1992, Appl. Phys. Lett., Vol.62, pp.744-746.
[25]R. Myers, and J. F. Wager, 1997, “Transferred change analysis of evaporated ZnS:Mn alternating-current thin-film electroluminescent devices,” J. Appl. Phys, Vol.81, pp.506-510.
[26]Chanaka Munasinghe, Jason Heikenfeld, Robert Dorey, Roger Whatmore, Jeffrey P. Bender, John F. Wager, and Andrew J. Steckl, 2005, “High Brightness ZnS and GaN Electroluminescent Devices Using PZT thick Dielectric Layer,” IEEE, Vol.52, pp.194-203.
[27]Yoshihiro Sekido, Masumi Koizumi, Juro Mita, Tadashi Hayashi, Munetada Kazama, and Kohji Nihei, “Thin-Film EL Display Panel with Low- and High-Resistivity Insulator,” Oki Electric Industry Co., Ltd., Tokyo, Japan.
[28]Yun Hi Lee, In-Jae Chung, and Myung-Hwan Oh, 1991, “Possible degradation mechanism in ZnS:Mn alternating current thin-film electroluminescent display,” Appl. Phys. Lett., Vol.58, pp.962-964.
[29]SHIBAN K. TIKU, AND SMA H. RUSTOMJI, 1989, “Dielectrics for Bright EL Displays,” IEEE., Vol.36, pp.1947-1952.
[30]GS-1271 光譜儀使用手冊 儀器製造原廠:GAMMA SCIENTIFIC  http://www.gamma-sci.com
[31]王怡蘋, “介電層結構對交流薄膜電激發光元件影響之研究,” 中興大學碩士論文.
[32]廖光照, “多重介電夾層結構對電激發光元件效率之影響,” 大葉大學碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top