跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文凱
研究生(外文):Wen-Kai Chang
論文名稱:高效率與高亮度的單層共摻雜藍綠光有機發光二極體
論文名稱(外文):High efficiency and luminance of blue-green organic light-emitting diode based on single co-doping layer
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:118
中文關鍵詞:有機發光二極體共摻雜高效率與高亮度
外文關鍵詞:organic light-emitting diodeco-dopinghigh efficiency and luminance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
我們利用ITO/NBP (50 nm)/LT-N421:C6 (0.4 wt%, 32 nm)/ DPVBi (8 nm)/ Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)結構成功地製作出一高效率與亮度的藍綠光有機發光二極體。將DPVBi層加入於發光層和電子傳輸層之間時,於再結合區能獲得一較好的電荷平衡與提升元件的性能。DPVBi不僅被作為藍色發光層更能幫助電子從Alq3注入至LT-N421中,以及避免電洞進入到電子傳輸層。LT-N421是一新藍光主體材料而Coumarin6 (C6)則是一綠光客體材料,將兩者共掺雜來獲得藍綠光。C6最佳的摻雜濃度為0.4 wt%且能有最佳的能量轉換。由於是單一發光層,因此元件色光非常穩定。當外加11 V電壓時,元件色座標為x = 0.22, y = 0.43而最高亮度為42400 cd/m2,最高電流與功率效率在11 V與6 V分別為8.83 cd/A和3.96 lm/W。
A high efficiency and luminance of blue-green organic light-emitting diode (BGOLED) was successfully fabricated using the structure of ITO/NBP (50 nm)/LT-N421:C6 (0.4 wt%, 32 nm)/DPVBi (8 nm)/ Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). Adding a DPVBi layer between the emission layer (EML) and electron transporting layer (ETL), a better charge balance in the recombination zone and a improved a performance could be obtained. DPVBi is not only used as the blue emission layer but also helps electrons injection into the LT-N421 layer from the Alq3 and avoids holes injection into the electron transporting layer. LT-N421 was a new blue emission host material and Coumarin 6 (C6) was a green emission dye as the guest material, we doped C6 into the LT-N421 layer to obtain blue-green emission. We found the optimum doping concentration was 0.4 wt% of C6 doped in LT-N421 layer and had the best energy transfer from LT-N421 to C6. The blue-green emission was stable because it was a single emission layer structure. The CIE coordinates of the device were x = 0.22, y = 0.43 when the maximum luminance was 42400 cd/m2 at 11 V. The maximum current efficiency and power efficiency were 8.83 cd/A at 11 V and 3.96 lm/W at 6 V, respectively.
Content

Abstract (in Chinese) I
Abstract (in English) II
Acknowledgement IV
Content V
Table Captions VII
Figure Captions VIII
Chapter 1 1
Introduction 1
1-1 The history of display 1
1-2 The outset of OLEDs 2
1-3 The advantages of OLEDs 4
Chapter 2 Review of publications 5
2-1 Material of OLEDs 5
2-1-1 Material of cathode 5
2-1-2 Material of anode 6
2-1-3 Hole injecting material (HIM) 7
2-1-4 Hole transporting material (HTM) 8
2-1-5 Electron injecting material (EIM) 8
2-1-6 Electron transporting material (ETM) 9
2-2 The operation theory of OLEDs 10
2-2-1 Absorption and emission 10
2-2-2 Energy transfer 10
2-2-3 Efficiency calculation 11
Chapter 3 Experiments and measurement system configuration 13
3-1 Materials 13
3-2 The treatment of substrate 14
3-3 Deposition system 15
3-4 Deposition of organic and metal thin films 17
3-5 Measurements 18
Chapter 4 Results and discussion 19
4-1 ITO/NPB (50 nm)/LT-N421 (40 nm)/Alq3 (x nm)/Al (200 nm) 19
4-2 ITO/NPB (60 nm)/LT-N421 (40 nm)/Alq3 (x nm)/Al (200 nm) 22
4-3 ITO/NPB (50 nm)/LT-N421 (40 - x nm)/DPVBi (x nm)/Alq3 (20 nm) /Al (200 nm) 25
4-4 ITO/NPB (50 nm)/ DPVBi (x nm)/LT-N421 (40 - x nm)/Alq3 (20 nm) /Al (200 nm) 28
4-5 ITO/NPB (50 nm)/ DPVBi (x nm)/LT-N421 (32 nm)/DPVBi (8 – x nm)/Alq3 (20 nm) /Al (200 nm) 30
4-6 ITO/NPB (50 nm)/LT-N421 (40 nm)/LiF (x nm)/Alq3 (x nm)/Al (200 nm) 33
4-7 ITO/NBP (50 nm)/DPVBi (x nm)/LT-N421 (32 nm)/DPVBi (8-x nm)/LiF (1 nm)/Alq3 (20 nm)/Al (200 nm) 35
4-8 ITO/NBP (50 nm)/LT-N421:C6 (x wt%, 40 nm)/Alq3 (20 nm)/Al (200 nm) 37
4-9 ITO/NBP (50 nm)/LT-N421:C6 (x wt%, 40 nm)/Alq3 (20 nm)/Al (200 nm) 40
4-10 ITO/NBP (50 nm)/LT-N421:C6 (x wt%, 40 nm)/Alq3 (20 nm)/ LiF (1 nm)/Al(200 nm) 42
4-11 ITO/NBP (50 nm)/LT-N421:C6 (x wt% 32 nm)/DPVBi (8 nm)/ Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) 44
4-12 ITO/NBP(50 nm)/LT-N421:C6(0.1 wt%, 40 nm)/LiF (1 nm)/Alq3(20 nm)/LiF (1 nm)/Al(200 nm) 46
4-13 ITO/NBP (50 nm)/DPVBi (2 nm)/LT-N421:C6 (0.1 wt%, 32 nm)/ DPVBi (6 nm)/ LiF (1 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) 48
Chapter 5 Conclusion 51
References 53
Publication list 61

Table Captions

Chapter 1
Table1- 1 The properties comparison between the flat panel displays (FPDs). 62

Figure Captions

Chapter 1

Fig. 1- 1 The comparison of inorganic LED and organic LED in the development of luminescence efficiency. 63

Chapter 2

Fig. 2 - 1 The processes of luminescence. 644
Fig. 2 - 2 The mechanism of radiative energy transfer. 655
Fig. 2 - 3 The mechanism of nonradiative energy transfer (a) Förster transfer by resonant dipole-dipole coupling, and (b) Dexter transfer by electron exchange. 655

Chapter 3

Fig. 3 - 1 Chemical structures of NPB, LT-N421, Coumarin 6, DPVBi and Alq3. 666
Fig. 3 - 2 Thermal vacuum evaporation system. 677

Chapter 4

Fig. 4 - 1 (a) The basic structure of devices (1) ~ (3). (b) The energy-level diagram of devices (1) ~ (3). 68
Fig. 4 - 2 The luminance-voltage curves of devices (1) ~ (3). 69
Fig. 4 - 3 The current-voltage curves of devices (1) ~ (3). 69
Fig. 4 - 4 The current efficiency-voltage curves of devices (1) ~ (3). 70
Fig. 4 - 5 The EL spectra of devices (1) ~ (3) at 10 V. 70
Fig. 4 - 6 The CIE coordinates of devices (1) ~ (3) at different voltages. 71
Fig. 4 - 7 The luminance-voltage curves of devices (4) ~ (6). 72
Fig. 4 - 8 The current-voltage curves of devices (4) ~ (6). 72
Fig. 4 - 9 The current efficiency-voltage curves of devices (1) ~ (3). 73
Fig. 4 - 10 The EL spectra of devices (4) ~ (6) at 10 V. 73
Fig. 4 - 11 The CIE coordinates of device (4) ~ (6) at different voltages. 74
Fig. 4 - 12 (a) The basic structure of devices (7) ~ (9). (b) The energy-level diagram of devices (7) ~ (9). 75
Fig. 4 - 13 The luminance-voltage curves of devices (7) ~ (9). 76
Fig. 4 - 14 The current-voltage curves of devices (7) ~ (9). 76
Fig. 4 - 15 The current efficiency-voltage curves of devices (7) ~ (9). 77
Fig. 4 - 16 The EL spectra of devices (7) ~ (9) at 10 V. 77
Fig. 4 - 17 The CIE coordinates of devices (7) ~ (9) at different voltages. 78
Fig. 4 - 18 (a) The basic structure of devices (10) ~ (12). (b) The energy- level diagram of devices (10) ~ (12). 79
Fig. 4 - 19 The luminance-voltage curves of devices (10) ~ (12). 80
Fig. 4 - 20 The current-voltage curves of devices (10) ~ (12). 80
Fig. 4 - 21 The current efficiency-voltage curves of devices (10) ~ (12). 81
Fig. 4 - 22 The EL spectra of devices (10) ~ (12) at 10 V. 81
Fig. 4 - 23 the CIE coordinates of devices (10) ~ (12) at different voltages. 82
Fig. 4 - 24 (a) The basic structure of devices (13) ~ (15). (b) The energy- level diagram of devices (13) ~ (15). 83
Fig. 4 - 25 The luminance-voltage curves of devices (13) ~ (15). 84
Fig. 4 - 26 The current-voltage curves of devices (13) ~ (15). 84
Fig. 4 - 27 The current efficiency-voltage curves of devices (13) ~ (15). 85
Fig. 4 - 28 The EL spectra of devices (13) ~ (15) at 10 V. 85
Fig. 4 - 29 The CIE coordinates of devices (13) ~ (15) at different voltages. 86
Fig. 4 - 30 (a) The basic structure of devices (16) ~ (18). (b) The energy- level diagram of devices (16) ~ (18). 87
Fig. 4 - 31 The luminance-voltage curves of devices (16) ~ (18). 88
Fig. 4 - 32 The current-voltage curves of devices (16) ~ (18). 88
Fig. 4 - 33 The current efficiency-voltage curves of devices (16) ~ (18). 89
Fig. 4 - 34 The EL spectra of devices (16) ~ (18) at 10 V. 89
Fig. 4 - 35 The CIE coordinates of devices (16) ~ (18) at different voltages. 90
Fig. 4 - 36 (a) The basic structure of devices (19) ~ (21). (b) The energy- level diagram of devices (19) ~ (21). 91
Fig. 4 - 37 The luminance-voltage curves of devices (19) ~ (21). 92
Fig. 4 - 38 The current-voltage curves of devices (19) ~ (21). 92
Fig. 4 - 39 The current efficiency-voltage curves of devices (19) ~ (21). 93
Fig. 4 - 40 The EL spectra of devices (19) ~ (21) at 10 V. 93
Fig. 4 - 41 The CIE coordinates of devices (19) ~ (21) at different voltages. 94
Fig. 4 - 42 (a) The basic structure of devices (22) ~ (24). (b) The energy- level diagram of devices (22) ~ (24). 95
Fig. 4 - 43 The luminance-voltage curves of devices (22) ~ (24). 96
Fig. 4 - 44 The current-voltage curves of devices (22) ~ (24). 96
Fig. 4 - 45 The current efficiency-voltage curves of devices (22) ~ (24). 97
Fig. 4 - 46 The EL spectra of devices (22) ~ (24) at 10 V. 97
Fig. 4 - 47 The CIE coordinates of devices (22) ~ (24) at different voltages. 98
Fig. 4 - 48 The luminance-voltage curves of devices (25) ~ (27). 99
Fig. 4 - 49 The current-voltage curves of devices (25) ~(27). 99
Fig. 4 - 50 The current efficiency-voltage curves of devices (25) ~ (27). 100
Fig. 4 - 51 The EL spectra of devices (25) ~ (27) at 10 V. 100
Fig. 4 - 52 The CIE coordinates of devices (25) ~ (27) at different voltages. 101
Fig. 4 - 53 (a) The basic structure of devices (28) ~ (30). (b) The energy- level diagram of devices (28) ~ (30). 102
Fig. 4 - 54 The luminance-voltage curves of devices (28) ~ (30). 103
Fig. 4 - 55 The current-voltage curves of devices (28) ~ (30). 103
Fig. 4 - 56 The current efficiency-voltage curves of devices (28) ~ (30). 104
Fig. 4 - 57 The EL spectra of devices (28) ~ (30) at 10 V. 104
Fig. 4 - 58 The CIE coordinates of devices (28) ~ (30) at different voltages. 105
Fig. 4 - 59 (a) The basic structure of devices (31) ~ (33). (b) The energy- level diagram of devices (31) ~ (33). 106
Fig. 4 - 60 The luminance-voltage curves of devices (31) ~ (33). 107
Fig. 4 - 61 The current-voltage curves of devices (31) ~ (33). 107
Fig. 4 - 62 The current efficiency-voltage curves of devices (31) ~ (33). 108
Fig. 4 - 63 The EL spectra of devices (28) ~ (30) at 10 V. 108
Fig. 4 - 64 The CIE coordinates of devices (31) ~ (33) at different voltages. 109
Fig. 4 - 65 (a) The basic structure of devices (34). (b) The energy- level diagram of devices (34). 110
Fig. 4 - 66 The luminance-voltage curves of devices (28) and (34). 111
Fig. 4 - 67 The current-voltage curves of devices (28) and (34). 111
Fig. 4 - 68 The current efficiency-voltage curves of devices (28) and (34). 112
Fig. 4 - 69 The EL spectra of devices (28) and (34) at 10 V. 112
Fig. 4 - 70 The CIE coordinates of device (34) at different voltages. 113
Fig. 4 - 71 (a) The basic structure of devices (35). (b) The energy- level diagram of devices (35). 114
Fig. 4 - 72 The luminance-voltage curves of devices (31) and (35). 115
Fig. 4 - 73 The current-voltage curves of devices (31) and (35). 115
Fig. 4 - 74 The current efficiency-voltage curves of devices (31) and (35). 116
Fig. 4 - 75 The EL spectra of devices (31) and (35) at 10 V. 116
Fig. 4 - 76 The CIE coordinates of device (35) at different voltages. 117
Fig. 4 - 77 The pictures of luminescence performance of BGOLED with C6 doped 0.4 wt% in LT-N421 layer. 118
[1]http://www.ritdisplay.com/index.htm 錸寶科技股份有限公司
[2] J. R. Sheats et al., “Organic electroluminanescent device,” Science 273, pp.884-888 (1996)
[3] M. Pope, H. Kallman, P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., 38, pp.2042 (1963).
[4] C. W. Tang, S. A. VanSlyke, “Organic electroluminanescent diode,” Appl. Phys. Lett., 51, pp.913-915 (1987).
[5] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, 347, pp.539-541 (1990).
[6] C. W. Tang, S. A. VanSlyke and C. H. Chen, “Electroluminescence of doped organic thin films,”J. Apply. Phys., 65, pp.3610-3616 (1989).
[7] B. W. D’Andrade, 2004, White Organic Light Emitting Devices, the faculty of princeton univesity, dissertation.
[8] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, “Formation cross-sections of singlet and triplet excitons in conjugated polymers,” Nature, 409, pp.494-497 (2001).
[9] D. F. O’Brien, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, “High-efficiency red electrophosphorescence devices” Appl. Phys. Lett., 78, pp.1622-1624 (2001).
[10] M. Stossel, J. Staudigel, F. Steuber, J. Simmerer, A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices,” Appl. Phys. A, 68, pp.387-390 (1999).
[11] M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H.-H. Johannes, W. Kowalsky, “Electron injection and transport in 8-hydroxyquinoline aluminum,” Synth. Met., 111, pp.19-24, (2000).
[12] T. Ishida, H. Kobayashi, Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., 73, pp.4344-4350 (1993).
[13] S. Seki, Y. Sawada, T. Nishide, “Indium–tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride,” Thin Solid Films, 388, pp.22-26 (2001).
[14] M. Bender, J. Trube, j. Stollenwerk, “Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films,” Appl. Phys. A, 69, pp.397-401 (1999).
[15] T. Futagami, Y. Shigesato, T. Yasui, “Characterization of RF-enhanced DC sputtering to deposit thi-doped indium oxide thin films,” Jpn. J. Appl. Phys. Part 1, 37, pp.6210-6214 (1998).
[16] T. Maruyama, K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition” Thin Solid Films, 203, pp.297-302 (1991).
[17] V. Vasu, A. Subrahmanyam, “Reaction kinetics of the formation of indium tin oxide films grown by spray pyrolysis,” Thin Solid Films, 193/194, pp.696-703 (1990).
[18] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, “Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface,” Journal of Luminescence, 87, pp.1165-1167 (2000).
[19] J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance,” J. Appl. Phys., 84, pp.6859-6870 (1998).
[20] S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices,” Appl. Phys. A, 68, pp.447-450 (1999).
[21] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,” J. Appl. Phys., 86, pp.1688-1692 (1999).
[22] S. A. VanSlyke, C. H. Chen, C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., 69, pp.2160-2162 (1996).
[23] Y. Shirota, Y. Kuwabara, H. Inada, “Multilayered organic electroluminescent device using a novel starburst molecule, 4,4 ,4 -tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material,” Appl. Phys. Lett., 65, pp.807-809 (1994).
[24] Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode,” Synth. Met., 87, pp.171-174 (1997).
[25] A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, “PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes,” Synth. Met., 111-112, pp.139-143 (2000).
[26] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett., 75, pp.1679-1681 (1999).
[27] S. A. VanSlyke, C. W. Tang, “Electroluminescent device with organic electroluminescent medium,” US 5,061,569 (1991).
[28] Jun Yeob Lee, “Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes” Appl. Phys. Lett., 88, pp.073512 (2006)
[29] M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum,” Appl. Phys. Lett., 76, pp.115-117 (2000).
[30] S. Shi, D. Ma, “NaCl/Ca/Al as an efficient cathode in organic light-emitting devices,” Applied Surface Science., 252, pp. 6337-6341 (2006).
[31]J. M. Warman, A. M. van de Craats, “Charge mobility in discotic materials studied by PR-TRMC,” Mol. Cryst. Liq. Cryst., 396, PP.41-72 (2003).
[32]X. Zhang, S. A. Jenekhe, “Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/ polymer heterojunctions,” Macromolecules, 33, pp.2069-2082 (2000).
[33]M. Klessinger, J. Michl, “Excited states and Photochemistry of Organic Molecules,” VCH Publishers, New York (1995).
[34]http://www.lumtec.com.tw/ Luminescence Technology Corporation 機光科技.
[35]Su et al. “Improved electroluminescent efficiency of organic light emitting devices by co-doping N, N -Dimethyl-quinacridone and Coumarin6 in tris-(8-hydroxyquinoline) aluminum,” Appl. Phys. Lett. 87, 213501 (2005).
[36]J. L. Fox and C. H. Chen, “Benzopyrano [6,7,8-i,j]quinolizine-11-one lasing dyes and intermediates for their preparation,” US 4,736,032 (1988).
[37]C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, “Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant,” Appl. Phys. Lett., 67, pp.3853-3855 (1995).
[38]H. Tokailin, H. Higashi, C. Hosokawa, T. Kusumoto, “Spurious oscillations in computing microstructures,” Proc SPIE, 1919, pp.38-46 (1993).
[39]H. Kanno, Y. Hamada, H. Takahashi, “Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays,” IEEE J. Select. Topic. Quantum Elect., 10, pp.30-36 (2004).
[40]B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian, W. Zhu, “Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials,” Jpn. J. Appl. Phys. Part 1, 39, pp.1190-1192 (2000).
[41]R. G. Kepler, P. M. Beeson, S. J. Jacobs, M. B. Sindair, V. S. Valencia, P. A. Cahil, “Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum,” Appl. Phys. Lett., 66, pp.3618-3620 (1995).
[42]A. L. Burin, M. A. Ratner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” J. Phys. Chem. A, 104, pp.4704-4710 (2000).
[43]趙偉明, 李述湯, 張步新, 朱文清, 蔣雪茵, 張志林, 許少鴻, 高效率的有機電致發光器件, Chinese Journal Of Luminance, 2000 Vol. 21 No. 1 P. 81-83.
[44]D. V. Kuksenkov, H. Temkin, K. L. Lear and H. Q. Hou, “Spontaneous emission factor in oxide confined vertical-cavity lasers,” Appl. Phys. Lett., 70, pp.13-15 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top