跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭安
研究生(外文):Chen, Zhao-An
論文名稱:分子動力學與有限元素法於探針卡壓印模擬之研究
論文名稱(外文):Study on IC Probe Card Simulation by Molecular Dynamics and Finite Element Method
指導教授:許光城許光城引用關係
指導教授(外文):Hsu, Quang-Cherng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:101
中文關鍵詞:分子動力學有限元素鋁材銲墊
外文關鍵詞:Molecular dynamicsFinite element methodProbe card testing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
在IC封裝測試的過程中,探針卡(Probe Card)的使用是扮演著相當重要的角色,經由探針卡上的探針與晶圓(Wafer)上特定的待測焊墊(Pad)接觸,以量得IC電路的電性,進而判定出晶粒的良率。而在IC測試的製程裡,探針卡是不可避免的耗材,為了降低封測時探針耗材的成本,各大封裝廠無不從各方面著手改善探針的壽命,如探針材料、探針幾何形狀、探針的沾黏情況。
本研究利用分子動力學為基礎,撰寫FORTRAN分析程式,探討在奈米尺度下,利用Lennard-Jones與Morse勢能模型,模擬奈米鎢探針以不同的幾何形狀下壓穿刺鋁材銲墊之成形機制與行為。在微觀塑性成形的模擬中,利用DEFORM有限元素分析軟體,模擬探針在不同的幾何形狀下壓印時的應與插痕分析。
在分子動力學方面,發現在角度越小的情況下,其負荷將會越大,而探針直徑越小,因為表面能關係,其黏著現象越明顯。於有限元素法中,角度與負荷的關係呈現與分子動力學相同現象,並發現在探針的壓痕有角度越小其插痕越大的趨勢,雖然這些趨勢合理,但未來仍須進行實驗以驗證分析結果。



關鍵詞:分子動力學、有限元素、探針卡測試
Abstract
Probe card detection plays important role during IC packaging and testing processes. Through the contact and penetration of probe tips into pad surfaces of IC, the functionality can be verified and the yielding ration can be obtained. During testing process, the probe card may deform, wear, and more often adhere some pad materials. Therefore, to improve the life of probe card becomes very important.
In the proposed paper, a Fortran code based on molecular dynamics was developed to understand the deformation and penetration mechanism between probe tip and pad surface in a reduced-small scale. Two potential functions, such as Lennard-Jones potential function and Morse potential function, were used to compare adhesion behavior during probe testing. DEFORM 3D finite element code was also used to analyze the deformation pressure during probe testing by varying tip geometry and shape.
The simulation results of molecular dynamics show that the probing force increase when the inclination angle becomes small and the adhesion effect becomes more severe when probe tip radius is smaller. The trend of probing force related with probe inclination is the same according to the simulation results of molecular dynamics and the finite element method. The penetration area becomes large when the inclination angle is small, which is the same for both methods. However, experimental study should be conducted for the future work to verify the simulation results.

Keywords: Molecular dynamics, Finite element method, Probe card testing
目錄
中文摘要...........................................................................................................................I
英文摘要......................................................................................................................... II
誌謝................................................................................................................................ IV
目錄.................................................................................................................................V
表目錄.........................................................................................................................VIII
圖目錄............................................................................................................................IX
符號說明...................................................................................................................... XII
第一章 序論.................................................................................................................... 1
1-1 前言................................................................................................................ 1
1-2 文獻回顧........................................................................................................ 4
1-2-1 分子動力學之文獻回顧.................................................................... 4
1-2-2 探針卡之文獻回顧............................................................................ 7
1-3 研究動機........................................................................................................ 9
1-4 本文架構...................................................................................................... 10
第二章 探針卡針測行為.............................................................................................. 13
2-1 晶圓針測(WAFER TEST) .............................................................................................13
2-1-1 針測測試機(Prober and Tester) .........................................................13
2-1-2 針測流程............................................................................................ 15
2-2 探針卡類型................................................................................................. 16
2-2-1 懸臂樑式探針卡(Cantilever Needle Card) ....................................... 17
2-2-2 懸臂樑式探針介紹............................................................................ 17
2-2-3 垂直式探針卡(Vertical Probe Card)................................................. 24
第三章 分子動力學理論.............................................................................................. 27
3-1 分子動力學之基本理論與假設................................................................. 27
3-2 勢能函數(POTENTIAL ENERGY FUNCTION)介紹......................................... 29

3-2-1 二體勢能介紹.................................................................................... 31
3-3 系綜觀念..................................................................................................... 35
3-4 週期性邊界條件(PERIODIC BOUNDARY CONDITION,PBC).......................... 36
3-5 最小映像法則(MINIMUM IMAGE CRITERION) ............................................. 38
3-6 初始條件..................................................................................................... 39
3-7 GEAR 五階預測修正法.............................................................................. 41
第四章 分子動力學數值模擬方法與有限元素法...................................................... 44
4-1 分子動力學數值模擬方法......................................................................... 44
4-1-1 建立物理模型..................................................................................... 44
4-1-2 截斷半徑法........................................................................................ 46
4-1-2-1 Verlet 表列法......................................................................... 47
4-1-2-2 Cell link 表列法..................................................................... 48
4-1-2-3 Cell link 表列結合Verlet 表列法......................................... 48
4-1-2-4 各種截斷半徑法效能比較................................................... 51
4-1-3 無因次化之系統建立........................................................................ 54
4-1-4 程式模擬之計算流程圖.................................................................... 56
4-2 有限元素分析(FINITE ELEMENT ANALYSIS) ............................................... 57
4-2-1 有限元素分析法之基本理論............................................................ 57
4-2-2 FEM 於塑性成形之應用................................................................... 60
4-2-3 DEFORM 軟體簡介........................................................................... 61
第五章 結果與討論...................................................................................................... 64
5-1 分子動力學基本設定與程式模擬規劃..................................................... 64
5-1-1 模擬參數設定.................................................................................... 64
5-1-2 程式模擬規劃.................................................................................... 65
5-2 分子動力學模擬研究結果與討論............................................................. 69
5-2-1 材料緩衝問題.................................................................................... 69
5-2-2 探針沾黏問題.................................................................................... 71
5-2-3 負荷位移比較.................................................................................... 73
5-3 有限元素基本設定與壓印製程規劃......................................................... 74
5-3-1 幾何模型建立.................................................................................... 74
5-3-2 模擬參數設定.................................................................................... 77
5-3-3 壓印製程規劃.................................................................................... 79
5-4 有限元素結果與討論................................................................................. 81
5-4-1 各角度探針壓印情況........................................................................ 81
5-4-2 探針角度之負荷應力比較................................................................ 82
5-4-3 負荷位移圖波動問題探討................................................................ 87
5-4-4 探針角度之插痕比較........................................................................ 89
5-4-5 探針負荷比較.................................................................................... 92
第六章 結論與建議...................................................................................................... 95
6-1 結論.............................................................................................................. 95
6-2 建議............................................................................................................. 95
參考文獻........................................................................................................................ 96
自述與著作.................................................................................................................. 101
參考文獻

[1]http://www.spm.com.cn
[2]朱訓鵬,“微奈米多重尺度模擬架構,”國立成功大學,第二屆量子工程科學研討會論文集,pp. 42-94,2004。
[3]J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” Journal Chemical Physical, Vol. 18, pp. 817, 1950.
[4]R. Smith, M. Jakas, D. Ashworth, B. Oven, M. Bowyer, I. Chakarov and R. Webb, “Atomic and Ion Collisions in Solids and at Surfaces,” Cambridge University Press, USA, 1997.
[5]N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Compution Machines,” J. Chem. Phys., Vol. 21, pp.1087-1092, 1953.
[6]W. W. Wood, J. D. Jacobson, J. Chem. Phys., 27, 1207, 1957.
[7]L. Verlet, “Computer Experiments on Classical Fluids Ⅱ, Equilibrium Correlation Function,” Phys. Rev, Vol. 165, pp. 201-214, 1968.
[8]B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comput. Phys., Vol.13, pp. 430, 1975.
[9]D. C. Rapaport, “Large-scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. Phys. Rep, Vol.9, pp. 1-53, 1988.
[10]G. S. Grest, B. Dunweg and K. Kremer, “Vectorrized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles,” Comput. Phys. Comm., Vol.55 (3), pp. 269-285, 1989.
[11]U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science Vol. 248, 454, 1900.
[12]V. V. Pokropivny, V. V. Skorokhod and A. V. Pokropivny, “Atomic Mechanism of Adhesive Wear during Friction of Atomic-sharp Tungsten Asperity Over (110) Bcc-iron Surface,” Materials Letters, Vol. 31, pp. 49-54, 1997.
[13]J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura, “Molecular Dynamics Simulation of friction on the atomic scale,” Nanotechnology, Vol. 9, pp. 118-123, 1998.
[14]R. Komanduri, N. Chandrasekaran and L.M. Raff, “M.D. simulation of indentation and scratching of single crystal aluminum,” Wear, Vol. 240, pp.113-143, 2000.
[15]R. Komanduri, N. Chandrasekaran and L.M. Raff, “M.D. simulation of nanometic cutting of single crystal aluminum-dffect of crystal orientation and direction of cutting,” Wear, Vol. 242, pp.60-88, 2000.
[16]A. Gannepalli and S. K. Mallapragada, “Molecular dynamics studies of plastic deformation during silicon nanoindentation,” Nanotechnology, Vol. 12, 250, 2001.
[17]P. Walsh, R. K. Kalia, A. Nakano and P.Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular silicon nitride: a multimillion atom silicon nitride: a multimillion atom molecular dynamics study,” Appl. Phys. Lett., Vol. 77, 4332, 2000.
[18]P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano and P.Vashishta, “Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study,” Appl. Phys. Lett., Vol. 82, 118, 2003.
[19]B. Li, P. C. Clapp, J. A. Rifkin and X. M. Zhang, “Molecular Dynamics calculation of heat dissipation during sliding friction,” International Journal of Heat and Mass Transfer, Vol. 46, pp.37-43, 2003.
[20]B. Adams, L. G. H. Jr, D. J. Siegel, H. Yu and J. Zhong, Surf. J Interface anal. 31, 619, 2001.
[21]T. A. Tran, L. Yong, B. Williams, S. Chen and A. Chen “Fine Pitch Probing and Wirebonding and Reliability of Aluminum Capped Copper Bond Pads,” IEEE Electronic Components and Technology Conference, pp.1674-1680, 2000.
[22]T. Akashi, T. Chikai, T. Hamano, A. Yoshida, S. Honma, H. Aoki, M. Miyata, K. Ezawa, T. Makita and M. Miyaoka, “Eutectic solder bumped flip chip development,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 319 - 325, 1997.
[23]M. J. Varnau, “Impact of Wafer Probe Damage ov Fkip Chip Yields and Reliability,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp.293-297, 1996.
[24]D. S. Liu, M. K. Shih and K. Y. Shu, “Development of Probing Mark Analysis Model”, NCCU Taiwan and ChipMOS, 2001.
[25]施孟鎧,“晶圓針測參數分析之測試方法與有限元素模擬,”國立中正大學機械工程研究所論文,2002。
[26]蔡紋錦,“積體電路探針卡之探針的應力與變形分析,”中華大學機械與航太工程研究所論文,2004。
[27]劉士銘,“多層探針織排列設計方法-應用有限元素分析,”國立中正大學機械工程研究所論文,2005。
[28]黃順隆,“微機電陣列式微探針卡之研製,”逢甲大學資訊電機工程研究所論文,2005。
[29]R. J. Arsenault and J. R. Beeler, “Computer Simulation in Material Science,” Asm international, USA, 1988.
[30]J. M. Haile, “Molecular Dynamics Simulation Elementary Method,” A Wiley-Interscience Publication, New York, 1993.
[31]L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, No. 3, 1959.
[32]F. Milstein, “Applicability of Exponentially Attractive and Repulsive Interactomic Potential Functions in the Description of Cubic Crystals,” Journal Annual Physical, Vol.44, No.9, 1973.
[33]朱訓鵬,“分子動力學與平行運算於奈米薄膜沈積模擬之應用,”成功大學機械所,博士論文,2001。
[34]Semiconductors and Test, http://www.soft-test.com/
[35]MICRONICS JAPAN CO.LTD, “Probing the Future”, http://www.mjc.co.jp/
[36]Enhanced Standard Cantilever Epoxy Probe Cards, http://www.knstaiwan.com
[37]Non-destructive Cleaning to Maintain High Wafer Yield and Extend Probe Card Life, http://www.inttest.com/
[38]J. Leung “Overview of C4 Array Probing,” IEEE SouthWest Test WorkShop, 1999.
[39]Apan Electronic Materials Corporation Introduction Vertical-Contact Probe Card, http://www.jemam.com/contact.html, 2002.
[40]陳怡安,“數值模擬於溫鍛模具磨耗分析之應用,”成功大學機械所,碩士論文,2000。
[41]黃光輝,“使用有限元素法分析的概念,”機械月刊元月號,第十八卷,第一期,pp.211-216,1992。
[42]DEFORM System User Manual, Scientific Forming Technologies Corporation, April. 1, 1994.
[43]許光城、姜智堯、陳建銘,“數值模擬於溫鍛模具磨耗分析之應用,”第五屆精密製造學術研討會,2006。
[44]林建良,“具黏著效應高分子材料奈米壓印分動力學之研究,”高雄應用科技大學機械與機密工程研究所,碩士論文,2006。
[45]吳政達,“二元合金微、奈米成形之實驗與理論研究,”高雄應用科技大學機械與機密工程研究所,碩士論文,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張毓純(2005),「品牌置入是道具,還是情節?」,動腦雜誌,v.349,頁20-21。
2. 戚栩僊(2003),「廣告效果展現:資訊處理與意義解釋二模式之初探」,廣告學研究,20:77-92。
3. 郭芷婷(2005),「用e打造個人品牌 Blog、BBS、個人網頁,自助式成名3種方法」,e天下雜誌,v.51。
4. 汪芸(2005),「網路紅孩兒 部落格改變世界互動」,遠見雜誌,2005年七月號。
5. 鄭自隆(2003),「媒體話題-置入式行銷不是毒蛇猛獸」,動腦雜誌,v.324,頁70-71。
6. 賴建都(1996),「網際網路廣告訊息設計之研究」,廣告學研究,11:19-35。
7. 謝效昭(1998),「網際網路對企業廣告策略的影響—探索性研究」,廣告學研究,11:1-17。
8. 1.王志誠,公開說明書不實記載之民事責任,政大法學評論第82期,2004年12月。
9. 2.王志誠,財務報告不實之民事責任,月旦財經法雜誌第1期,2005年6月。
10. 3.邵慶平,董事法制的移植與衝突—兼論「外部董事免責」作為法制移植的策略,臺北大學法學論叢第57期,2005年12月。
11. 6.林國全,股份有限公司董事民事賠償責任之追究,月旦民商法雜誌創刊號,2003年9月。
12. 8.莊永丞,論證券交易法第二十條證券詐欺損害賠償責任之因果關係,中原財經法學第8期,2002年6月。
13. 10.張心悌,證券交易法中虛偽陳述之民事責任—兼論大陸銀廣夏案,月旦民商法雜誌第3期,2005年7月。
14. 11.黃銘傑,從安隆案看我國會計師民事責任之現狀,月旦法學雜誌第85期,2002年6月。
15. 12.黃銘傑,公司法理與董監民事責任之現狀及課題—以外部董事制度及忠實、注意義務為中心,律師雜誌第305期,2005年2月。