跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭崇和
研究生(外文):Chung-Huo Cheng
論文名稱:方形開放容器中微極流體之自然對流熱傳研究
論文名稱(外文):Natural convention of micropolar fluilds in a square open container
指導教授:許燦輝
指導教授(外文):Tsan-Hui Hsu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:136
中文關鍵詞:微極流體三次樣線交換方向定置法自然對流
外文關鍵詞:Micropolar fluidSpline Alternating Direction Implicit MethodNatural convection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值計算方法來模擬求解,微極流體在方形開口容器之自然對流熱傳問題。方形開口容器左邊壁面為等溫,上壁面為開口,右壁面和下壁面為絕熱。微極流體之統御方程式之推導首先由A.C. Eringen提出,配合微極流體定律之提出,將牛頓流體擴展至非牛頓流體的應用。數值計算上是以三次樣線交換方向定置法(SADI;Spline Alternating-Direction Implicit Method)在個人電腦上求解。無因次化轉換後的統御方程式以流線、渦漩函數、角動量及溫度函數等表示,並得到穩態的熱傳效應。而影響熱場的數值參數主要有Pr、Gr和微極流體特有的參數。數值模擬顯示出,一般牛頓流體比微極流體的熱傳效果較佳,本文將方形開口容器所模擬結果的流場,以及溫度場繪製並討論之。
Natural convection heat transfer of micropolar fluids in a square open container is numerically investigated in this study. The governing equations for micropolar fluid were first presented by A.C. Eringen, wherein we furthermore expand the applications to non-Newtonian fluids. The numerical computations were obtained using the cubic spline collocation method in a personal computer. The governing equations, including stream function, vorticity, microrotation and energy, were first put in dimensionless form. The governing parameters appearing in present study are Pr, Gr, and of micropolar fluid parameters. The numerical results of the flow fields are discussed with plots and tables of isotherms, streamlines and velocity vectors. The results indicate that the Newtonian fluid has more significant convection heat transfer effect than that of micropolar fluids.
第一章 緒論…………………………………………………………………… 1
1-1 研究目的與動機及其背景…………………………………………… 1
1-2 相關文獻回顧………………………………………………………… 2
1-3 研究方法……………………………………………………………… 4
1-4 本文架構……………………………………………………………… 4
第二章 理論分析與數值方法………………………………………………… 5
2-1 物理模型……………………………………………………………… 5
2-2 基本假設……………………………………………………………… 6
2-3 統御方程式…………………………………………………………… 6
2-4 開口全開系統邊界狀況……………………………………………… 7
2-5 無因次化分析………………………………………………………… 7
2-6 邊界條件……………………………………………………………… 9
2-7 數值解析……………………………………………………………… 10
2-8 數值方法…………...…………………………………………………11
2-8.1 樣線函數表示法及其性質……………………………………………13
2-8.2 利用三次樣線函數求解…………………………………………16
2-8.3 邊界條件之處理…………………………………………………19
2-9 解題方法與程序…………………………………………………………20
第三章 結果與討論………………………………………………………………22
3-1 數值方法正確性之測試…………………………………………………22
3-2 格點測試……………...………………………………………………22
3-3 微極流體R參數的影響……………………………………………… 22
3-4 微極流體λ參數的影響……………………………………… 24
3-5 開口變化的影響…………………………………………… 25
第四章 結論與建議…………………………………………………………… 132
4-1 結論…………………………………………………………………… 132
4-2 對未來研究之建議…………………………………………………… 133
參考文獻……………………………………………………………………… 134
1.E.Bilgen, 2002, “Natural convection in enclosures with partial partitions”, Renewable Energy, Vol. 26, pp. 257-270.
2.Joel Neymark, Charles R. Boardman III, Allan Kirkpatrick and Ren Anderson, 1989, “High Rayleigh number natural convection in partially divided air and water filled enclosures,” International Journal Heat and Mass Transfer, Vol. 32,No9, pp. 1671-1679.
3.Qi-Hong Deng, Guang-Fa Tang, Yuguo Li, Man Yeong Ha, 2002, “Interaction between discrete heat sources in horizontal natural convection enclosures”, International Journal Heat and Mass Transfer, Vol. 45, pp. 5117-5132.
4.WG Brown and K. R. Solvason, 1962, “Natural convection through rectangular openings in partitions”, International Journal Heat and Mass Transfer, Vol. 5, pp. 859-868.
5.N. N. Lin and A. Bejan, 1983, “Natural convection in a partially divided enclosure”, International Journal Heat and Mass Transfer, Vol. 26, pp. 1867-1878.
6.I. Dagtekin and H. F. Oztop, 2001, “Natural convection heat transfer by heated partitions within enclosure”, Int. Comm. Heat Mass Transfer, Vol. 28. , No.6, pp. 823-824.
7.J.L. Lage, A. Bejan, 1993, “The resonance of natural convection in an enclosure heated periodically from the side”, International Journal Heat and Mass Transfer, Vol. 36, pp. 2027-2038.
8.J.H. Lee, R.J Goldstein, 1988, “An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources”, ASME J. Heat Transfer, Vol. 110, pp. 345-349.
9.D. Angirasa, M. J. B. M. Pourquie, and F. T. M. Nieuwstadt, 1992, “A Numerical Study of Steady and Transient Laminar Buoyancy Driven Flow and Heat Transfer in a Square Open Cavity”, Numer. Heat Transfer Part A, vol. 22, pp.223-239.
10.D. Angirasa, J.G.M. Eggels, and F.T.M. Nieuwstandt, 1995, “Numerical simulation of transient natural convection from an isothermal cavity open on a side”, Numer. Heat Transfer Part A, vol. 28, pp.755-768.
11.F. Penot, 1982, “Numerical Calculation of Two-Dimensional Natural Convection in Isothermal Open Cavities” Numer. Heat Transfer, vol. 5, pp. 421-437.
12.Y. L. Chan and C. L. Tien, 1985, “A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities”, Int. J. Heat Mass Transfer, vol. 28, pp. 603-612.
13.Y. L. Chan and C. L. Tien, 1985, “A Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities”, Numer. Heat Transfer, vol. 8, pp65-80.
14.M. Miyamoto, T.H. Kuehn and R.J. Goldstein, 1989, “Two-dimensional laminar natural convection heat transfer from a fully or partially open square cavity”, Numer. Heat Transfer Part A, vol. 15, pp.411-430.
15.K.A.R. Ismail, V.L Scalon, 2000, “A finite element free convection model for the side wall heated cavity”, International Journal Heat and Mass Transfer, Vol. 43, pp. 1373-1389.
16.M. Prud homme and H. Bougherara, 2001, “Linear stability of free convection in vertical cavity heated by uniform heat fluxes”, Int. Comm. Heat Mass Transfer, Vol. 28, No.6, pp. 743-750.
17.A. Cihat Baytas ,Ioan Pop, 2002, “Free convection in a square porous cavity using a thermal nonequilibrium model”, International Journal of Thermal Sciences, Vol. 41, pp. 861-870.
18.P.Le Quere, J. A. C. Humphrey, and F. S. Sherman, 1981, “Numerical Calculation of Thermally Driven Two-Dimensional Unsteady Laminar Flow in Cavities of Rectangular Cross Section”, Numer. Heat Transfer, vol .4,pp. 249-293.
19.O. Polat, E. Bilgen, 2002, “Laminar natural convection in inclined open shallow cavites”, International Journal of Thermal Sciences, Vol. 41, pp. 360-368.
20.A. C. Eringen, 1964, “Simple Microfluids”, Int. J. Engng. Sci., Vol.2, pp.205-217.
21.A. C. Eringen, 1965, “Mechanical of Micromorphic Materials”, Proc. of The Elevent Int. cong. Appl. Mech. Munich Germany, pp.131, Springer.
22.A.C. Eringen, 1966, “Theory of micropolar fluids”, J. Math. Mech, Vol.16, pp.1-18.
23.A.C. Eringen, 1972, “Theory of thermomicrofluids”, J. Math. Analysis Applic, Vol.38, pp.480-496.
24.M.E. Erdogan, 1970, “Polar Effects in the Apparent Viscosity of a Suspension”, Rheol. ACTA, Vol.9, pp.434-438.
25.J. Peddieson and R.P. McNitt, 1970, “Boundary Layer Theory for a Micropolar Fluid”, Recent Adv. Engng. Sci., vol.5, pp.405-426.
26.T. Ariman, M. A Turk, N. D. Sylvester, 1973, “Microcontinuum fluid Mechanics---A Review”, Int, J. Engng. Sci., Vol. 11, pp.905-930.
27.T. Ariman, M. A Turk, N. D. Sylvester, 1974, “Applications of Microcontinuum fluid Mechanics”, Int, J. Engng. Sci., Vol. 12, pp.273-293.
28.V. L. Kolpashchikov, N. P. Migun and P. P., 1983 Prokhorenko, “Experimental determination of material micropolar fluid constants”, International Journal of Engineering Science, Vol. 21, No. 4, pp. 405-411.
29.T.H. Hsu, C.K. Chen, 1996, “Natural convection of micropolar fluids in rectangular enclosure”, Int. J. Engng. Sci, Vol.34, No.4, pp.407-415.
30.Pao-Tung Hsu, Tsan-Hui Hsu, 1994, “Mixed convection of micropolar fluids in a rectangular cavity”,pp.243-252.
31.Pao-Tung Hsu, Tsan-Hui Hsu, 1995, “Numerical Study of natural convection of micropolar fluid in an enclosure”, The third national conference on computational fluid dynamics, pp.83-91.
32.Tsan-Hui Hsu and Pao-Tung Hsu, 1995, “Thermal convection of micropolar fluids in a lid-driven cavity”, International communications in heat and mass transfer, Vol.22, No.2, pp.189-200.
33.Tsan-Hui Hsu, Chao-Kuang Chen, 1996, “Natural convection of micropolar fluids in a rectangular enclosure”, Int. J. Engng Sci., Vol.34, No.4, pp.407-415.
34.Tsan-Hui Hsu, Sheng-Gwo Wang, 2000, “Mixed convection of micropolar fluids in a cavity”, International Journal of Heat and Mass Transfer, Vol.43, pp.1562-1572.
35.Ming-I Char and Cheng-Long Chang, 1997, “Effect of wall conduction on natural convection flow of micropolar fluids along a flat plate”, Int. J. Heat Mass Transfer, Vol.40, No.15, pp.3641-3652.
36.Abderrahim Mrabti, Kamal Gueraoui, Abdelaziz Hihi, Omar Terhmina, 2000, “Effects of microstructure on natural convection flow of micropolar fluids in vertical cylinder heated from below”, International Journal of Engineering Science, Vol.38, pp.823-831.
37.Ali J. Chamkha, T. Grosan and I. Pop, 2002, “Fully developed free convection of a micropolar fluid in a vertical channel”, Int. Comm. Heat Mass Transfer, Vol.29, No.8, pp. 1119-1127.
38.C. K. Chen, 1986, “Application of cubic spline collocation method to solve transient heat transfer problem”, Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182.
39.M. Napolitano, 1984, “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations”, International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115.
40.P. Wang and R. Kahawita, 1983, “Numerical integration of partial differential equations using cubic splines” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top