跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林立偉
研究生(外文):Li-Wei Lin
論文名稱:微極流體於方形開放容器內之混合對流熱傳研究
論文名稱(外文):Mixed convection of micropolar fluids in a square vented enclosure.
指導教授:許燦輝
指導教授(外文):Tsan-Hui Hsu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:112
中文關鍵詞:微極流體三次樣線定置法混合對流
外文關鍵詞:Micropolar fluidsSpline Alternating-Direction Implicit MethodMixed convection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值計算方法來模擬求解微極流體於方形開放容器內之混合對流熱傳問題。流體由下端進口端流入等溫且固定流速之流體,流經容器再由上端的出口端流出,方形容器的右壁面為絕熱,左壁面為等溫加熱,上下壁面皆為絕熱。統御方程式之推導由完整的穩態二維不可壓縮流體之Navier-Stokes方程式加入微極流體之方程式推導得之。微極流體之統御方程式之推導首先由A.C.Eringen提出,配合微極流體定律之提出將牛頓流體擴展至非牛頓流體的應用。數值計算上是以三次樣線交換方向定置(SADI;Spline Alternating-Direction Implicit Method)在個人電腦上求解。無因次化轉換後的統御方程式以流線、旋渦方程式、角動量及溫度函數等表示,並得到穩態的熱傳效應。而影響熱場的數值參數主要有Ri數、Re數和微極流體特有參數,本文探討當改變不同參數時對整個流場情形的熱傳影響。數值模擬顯示出,當Re數及Ri數增加時,可提高整體的熱傳效率,對系統散熱有顯著的影響。並且發現一般牛頓流體的熱傳效果比微極流體較佳。
Mixed convection of micropolar fluids in a square vented enclosure is numerically investigated in this study. The fluid flows into the square vented enclosure from an inlet at the bottom surface, and exits from a vent at the top surface. Both the temperature and the velocity of the inflow fluid are kept constant. The governing equations for micropolar fluid were first presented by A.C. Eringen, wherein we furthermore expand the applications to non-Newtonian fluids. The numerical computations were obtained using the cubic spline collocation method in a personal computer. The governing equations, including stream function, vorticity, microrotation and energy, were first put in dimensionless form. The governing parameters appearing in present study are Ri, Re and several parameters of micropolar fluid. The numerical results of the flow fields are discussed with plots and tables of isotherms, streamlines, microrotations and velocity vectors. The numerical solutions indicate that increasing the amount of Re or Ri leads to higher heat transfer coefficient. Besides, the Newtonian fluid has more significant convection heat transfer effect than that of micropolar fluids.
中文摘要(橫式)…………………………………………………………… i
英文摘要(橫式)…………………………………………………………… ii
致謝…………………………………………………………………………… iii
目錄…………………………………………………………………………… iv
表目錄………………………………………………………………………… vi
圖目錄………………………………………………………………………… vii
符號說明……………………………………………………………………… xiv
第一章 緒論………………………………………………………………… 1
1-1 研究目的與動機及其背景………………………………………… 1
1-2 相關文獻回顧……………………………………………………… 2
1-3 研究方法…………………………………………………………… 5
1-4 本文架構…………………………………………………………… 5
第二章 理論分析與數值方法……………………………………………… 6
2-1 物理模型…………………………………………………………… 6
2-2 基本假設…………………………………………………………… 7
2-3 統御方程式………………………………………………………… 7
2-4 系統邊界狀況……………………………………………………… 8
2-5 無因次化分析……………………………………………………… 9
2-6 邊界條件…………………………………………………………… 11
第三章 數值方法…………………………………………………………… 13
3-1 數值解析…………………………………………………………… 13
3-2 數值方法…………………………………………………………… 15
3-2.1 線函數表示式及其性質……………………………………… 16
3-2.2 利用三次樣線函數求解……………………………………… 19
3-2.3 邊界條件之處理……………………………………………… 22
3-3 解題方法與程序…………………………………………………… 24
第四章 結果與討論………………………………………………………… 25
4-1 數值方法正確性之測試…………………………………………… 25
4-2 格點測試…………………………………………………………… 25
4-3 雷諾數Re的影響…………………………………………………… 26
4-4 浮力參數Ri的影響………………………………………………… 26
4-5 微極流體R參數的影響…………………………………………… 27
4-6 微極流體λ參數的影響…………………………………………… 29
4-7 微旋度分佈圖之分析……………………………………………… 30
4-7.1 不同雷諾數Re的影響……………………………………… 30
4-7.2 不同浮力參數Ri的影響……………………………………… 31
4-7.3 不同微極流體參數R的影響………………………………… 31
4-7.4 不同微極流體參數λ的影響………………………………… 31
4-8 開口位置及孔口比變化的影響…………………………………… 32
第五章 結論與建議………………………………………………………… 107
5-1 結論………………………………………………………………… 107
5-2 對未來研究之建議………………………………………………… 108
參考文獻…………………………………………………………………… 109
1.S.Ostrach and Y.Kamotani, 1975,“Heat transfer argumention in Laminar fully developed channel flow by means of heating from below.”, ASME J. Heat Transfer, vol.97, pp.220-225.
2.C.Y. Choi, A. Ortega, 1993, “Mixed convection in an inclined channel with a discrete heat source.”, Int. J. Heat Mass Transfer, vol.36, pp.3119-3134.
3.C. Yucel, H. Hasnaoui, L. Robillard, E. Bilgen, 1993,“Mixed convection heat transfer in open ended inclined channels with discrete isothermal heating.”, Numer. Heat Transfer Part A 24, pp.109-126.
4.E. Papanicolaou, Y. Jaluria, 1995,“Computation of turbulent flow in mixed convection in a cavity with a localized heat source.”, ASME J. Heat Transfer, vol.17, pp.649-658.
5.K. Khanafer, K. Vafai, M. Lightstone, 2002,“Mixed convection heat transfer in two-dimensional open-ended enclosures.”, Int. J. Heat and Mass Transfer, vol.45, pp.5171-5190.
6.F. P. Incropera and J.R. Maughan, 1987,“Experiments on Mixed convection heat transfer for airflow in a horizontal and inclined channel.”, Int. J. Heat and Mass Transfer, vol.30, pp.1307-1318.
7.K.J. Kennedy and A. Zebib, 1983,“Combined free and forced convection between horizontal parallel planes: Some case studies.”, Int. J. Heat and Mass Transfer, vol.26, pp.471-474.
8.E. Natio and Y. Nagnao, 1989,“Combined forced and free upward-flow convection in the entrance region between inclined parallel plates.”, ASME J. Heat Transfer, vol.111, pp.675-682.
9.K.A.R. Ismail, V.L Scalon, 2000,“A finite element free convection model for the side wall heated cavity.”,Int. J. Heat and Mass Transfer, vol.43, pp.1373-1389.
10.A.Cihat Baytas ,Ioan Pop, 2002,“Free convection in a square porous cavity using a thermal nonequilibrium model.”,Int. J. Thermal Sciences, vol.41, pp.861-870.
11.P.Le Quere, J. A. C. Humphrey, and F. S. Sherman, 1981,“Numerical Calculation of Thermally Driven Two-Dimensional Unsteady Laminar Flow in Cavities of Rectangular Cross Section.”, Numer. Heat Transfer, vol.4, pp.249-293.
12.T.H. Hsu, P.T. Hsu, S.P. How, 1997,“Transient mixed convection in a partially divided enclosure.”, Numer. Heat Transfer Part A 31, pp.655-683.
13.T.H. Hsu, S.G. Wang, 1999,“Mixed convection of micropolar fluids in a cavuty.”,Int.J. Heat and Mass Transfer, vol.43, pp.1563-1572.
14.A.C. Eringen, 1964,“Simple Microfluids.”, Int. J. Engng. Sci., Vol.2, pp.205-217.
15.A.C. Eringen, 1965, “Mechanical of Micromorphic Materials.”, Proc. of The Elevent Int. cong. Appl. Mech. Munich Germany, pp.131, Springer.
16.A.C. Eringen, 1966, “Theory of micropolar fluids.”, J. Math. Mech, Vol.16, pp.1-18.
17.A.C. Eringen, 1972, “Theory of thermomicrofluids.”, J. Math. Analysis Applic, Vol.38, pp.480-496.
18.M.E. Erdogan, 1970, “Polar Effects in the Apparent Viscosity of a Suspension.”, Rheol. ACTA, Vol.9, pp.434-438.
19.J. Peddieson and R.P. McNitt, 1970, “Boundary Layer Theory for a Micropolar Fluid.”, Recent Adv. Engng. Sci., vol.5, pp.405-426.
20.T. Ariman, M. A Turk, N. D. Sylvester, 1973, “Microcontinuum fluid Mechanics---A Review.”, Int. J. Engineering Science., vol.11, pp.905-930.
21.T. Ariman, M. A Turk, N. D. Sylvester, 1974, “Applications of Microcontinuum fluid Mechanics.”, Int. J. Engineering Science., vol.12, pp.273-293.
22.V. L. Kolpashchikov, N. P. Migun and P. P., 1983 Prokhorenko, “Experimental determination of material micropolar fluid constants.”, Int. J. Engineering Science, vol.21, pp.405-411.
23.T.H. Hsu, C.K. Chen, 1996, “Natural convection of micropolar fluids in rectangular enclosure.”, Int. J. Engineering Science, vol.34, pp.407-415.
24.Pao-Tung Hsu, Tsan-Hui Hsu, 1994, “Mixed convection of micropolar fluids in a rectangular cavity.”, 第九屆全國技術及職業教育研討會,pp.243-252.
25.Pao-Tung Hsu, Tsan-Hui Hsu, 1995, “Numerical Study of natural convection of micropolar fluid in an enclosure.”, The third national conference on computational fluid dynamics, pp.83-91.
26.Tsan-Hui Hsu and Pao-Tung Hsu, 1995, “Thermal convection of micropolar fluids in a lid-driven cavity.”, Int. Comm. Heat Mass Transfer, vol.22, pp.189-200.
27.Tsan-Hui Hsu, Chao-Kuang Chen, 1996, “Natural convection of micropolar fluids in a rectangular enclosure.”, Int. J. Engineering Science., vol.34, pp.407-415.
28.Tsan-Hui Hsu, Sheng-Gwo Wang, 2000, “Mixed convection of micropolar fluids in a cavity”, Int. J. Heat and Mass Transfer, vol.43, pp.1562-1572.
29.Ming-I Char and Cheng-Long Chang, 1997, “Effect of wall conduction on natural convection flow of micropolar fluids along a flat plate.”, Int. J. Heat Mass Transfer, vol.40, pp.3641-3652.
30.Abderrahim Mrabti, Kamal Gueraoui, Abdelaziz Hihi, Omar Terhmina, 2000, “Effects of microstructure on natural convection flow of micropolar fluids in vertical cylinder heated from below.”, Int. J. Engineering Science, vol.38, pp.823-831.
31.Ali J. Chamkha, T. Grosan and I. Pop, 2002, “Fully developed free convection of a micropolar fluid in a vertical channel.”, Int. Comm. Heat Mass Transfer, vol.29,pp.1119-1127.
32.劉耿豪,2002,磁場影響下微極流體通過波形渠道之暫態對流熱傳研究,國立成功大學,碩士論文。
33.王怡然,2003,受磁場與化學反應下微極流體在垂直波形板表面之暫態混合對流熱傳研究,國立成功大學,碩士論文。
34.洪國益,2004,微極流體在開放內穴之自然對流熱傳研究,國立高雄應用科技大學,碩士論文。
35.P. Wang and R. Kahawita, 1983, “Numerical integration of partial differential equations using cubic splines.” Int. J. Computer Mathematics, vol.13, No. 3-4, pp.271-286.
36.M. Napolitano, 1984, “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations.”, Int. J. Numerical Methods in Fluids, vol.4, pp.1101-1115.
37.Abderrahim Mrabti, Kamal Gueraoui, Abdelaziz Hihi, Omar Terhmina, 2000, “Effects of microstructure on natural convection flow of micropolar fluids in vertical cylinder heated from below.”, Int. J. Engineering Science, vol.38, pp.823-831.
38.S. Mahmud and I. Pop, 2006,“Mixed convection in a square vented enclosure filled with a porous medium.”Int. J. Heat and Mass Transfer, vol.49, pp.2190-2206.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top