(44.192.10.166) 您好!臺灣時間:2021/03/06 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建宏
研究生(外文):chen chan homn
論文名稱:TiNiCr三元系形狀記憶合金熱機處理之研究
論文名稱(外文):A study of Thermo-mechanical treatment of TiNiCr Ternary Shape Memory Alloys
指導教授:謝世峯
指導教授(外文):Hsieh shin feng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:123
中文關鍵詞:形狀記憶合金擬彈性形狀記憶效應
外文關鍵詞:shape memroy alloyPseudoelasticshape memory effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對Ti50Ni50-XCrX(X=0.5, 1.0at.%)合金做熱機處理之研究。對Ti50Ni49.5Cr0.5實施15%、25%、35%之冷加工後以及退火處理,並探討其晶粒細化後退火對TiNiCr三元合金之相變態行為之影響。並探討在添加1.0at.%Cr元素後對TiNiCr合金進行熱機處理(時效處理,熱循環處理)並針
對相變態行為、熱焓量之變化進行探討。
Ti50Ni49.5Cr0.5三元系形狀記憶合金在經過不同條件的冷輥延與退火處理會有產生多階段的麻田散體轉換。這些現象的形成是因為沿著在材料厚度不同的晶粒大小所導致的。在光學顯微鏡下顯示出在不同退火條件下其晶粒大小會有所不同。在這些退火條件下,計算出再結晶的活化能為71KJ/mol而比Ti50Ni50合金再結晶的活化能51KJ/mol還要來的大,主要是因為Cr原子的固溶所導致的。實驗結果顯示本合金在冷輥延與500C 、650C退火處理後,其晶粒成長係數為0.12,0.15。形狀記憶效應會隨著冷輥延量的增加有所有增加。
在Ti50Ni49Cr1.0合金於固溶處理後產生了兩階段之變化(B19’RB2)
、然而在Cr元素添加使其固溶強化而導致合金基地硬度提高,因此在經過時效400℃×240hr後,M*溫度比固溶強化之M*來的低、此乃因第二相Ti2(Ni,Cr)與基地之間原子的擴散使基地之成份會有所減少而導致變態溫度的稍為下降。且在相同情況下熱循環後其硬度也會比原來的Ti50Ni50還要來得高;主要因合金在熱循環初期會較容易導入差排以及缺陷,使M*與R*溫度會逐漸降低且下幅度會比Ti50Ni50來的大。本合金經熱循環後之強化效應亦遵循著Ms=TO-K△σy,其中K值代表著的強化機構;而添加Cr後,其固溶強化硬度來的比較高,所以其K值較大。本合金也會因添
加Cr元素後產生固溶強化,致使K值比Ti50Ni50、Ti51Ni49還要來的大。
This study investigates the effects of the thermo-mechanical treatment on Ti50Ni49.5Cr0.5 and Ti50Ni49Cr1 ternary shape memory alloys. Ti50Ni49.5Cr0.5 alloy’s plates were cold-rolled at room temperature to15, 25 and 35% reduction in thickness, and then annealed at various temperature, 350C ~650C, for different time intervals (10 s ~ 24 hours). Effects of grain size on transformation behavior of this alloy after cold rolling and subsequent annealing are studied. The transformation behaviors and shape memory characteristics of Ti50Ni49Cr1 alloy will also be studied under various aging and
thermal-cycling treatment processes.

Ti50Ni49.5Cr0.5 ternary shape memory alloy cold-rolled and annealed at specific conditions can exhibit multiple-stage martensitic transformation. This feature may arise from the grain size distribution along the specimen’s thickness direction. Optical microscopic results reveal the size of grains after various annealing conditions. From these results, the activation energy of recrystallization is calculated as 71 KJ/mole, which is larger than that of Ti50Ni50 alloy, 51 KJ/mole, due to the solid solution of Cr atoms. The experimental grain-growth exponents at 500C and 650C are 0.12 and 0.15 for cold-rolled specimens, respectively. Shape recovery of cold-rolled alloy
increases with increasing the amounts of thickness reduction.

The solution-treated Ti50Ni49Cr1 alloy undergoes two-stage B2RB19’ martensitic transformation. M*, R* and A* decrease with increasing aging time at 400C because the Cr atoms diffuse slightly from the Ti2Ni to the B2 matrix. At the same time, M* and A* of this alloy can be more depressed by thermal cycling than those of the Ti50Ni50 alloy. This feature results from the fact that this alloy has a higher inherent hardness due to the solid solution of the Cr atoms. The strengthening effect of thermal-cycling on the M* ( Ms) temperature of this alloy follows the expression Ms=T0  Ky, in which K values are affected by different strengthening process. It is found that the higher the inherent hardness of the Ti51Ni49 and Ti50Ni49Cr1alloys, the higher
the K values they have.
目 錄
中文摘要------------------------------------------------------------------------ i
英文摘要------------------------------------------------------------------------ iii
誌謝------------------------------------------------------------------------------ v
目錄------------------------------------------------------------------------------ vi
表目錄--------------------------------------------------------------------------- viii
圖目錄--------------------------------------------------------------------------- x
符號說明------------------------------------------------------------------------ xiv
第一章 前言------------------------------------------------------------------ 1
第二章 文獻回顧------------------------------------------------------------ 3
2-1 形狀記憶合金簡介-------------------------------------------------- 3
2-2 熱彈性型麻田散體-------------------------------------------------- 3
2-3 形狀記憶效應-------------------------------------------------------- 5
2-4 擬彈性效應----------------------------------------------------------- 12
2-5 TiNi形狀記憶合金之特性----------------------------------------- 18
2-6 冷輥延效應----------------------------------------------------------- 21
2-7 再結晶退火文獻回顧----------------------------------------------- 23
2-8 熱循環之效應-------------------------------------------------------- 24
第三章 實驗方法------------------------------------------------------------ 25
3-1 合金配製-------------------------------------------------------------- 25
3-2 合金之熔煉----------------------------------------------------------- 28
3-3 均質化與固溶處理-------------------------------------------------- 30
3-4 熱機處理實驗-------------------------------------------------------- 30
3-5 EPMA成分分析----------------------------------------------------- 31
3-6 顯微組織觀察-------------------------------------------------------- 31
3-7 計算晶粒大小-------------------------------------------------------- 31
3-8 DSC量測實驗-------------------------------------------------------- 32
3-9 硬度量測-------------------------------------------------------------- 33
3-10 形狀記憶效應試驗-------------------------------------------------- 33
第四章 Ti50Ni49.5Cr0.5冷輥延實驗結果與討論------------------------- 36
4-1 Ti50Ni49.5Cr0.5冷輥延試片------------------------------------------ 36
4-2 冷輥延與退火後DSC之量測------------------------------------- 38
4-2-1 350℃退火------------------------------------------------------- 38
4-2-2 500℃退火------------------------------------------------------- 48
4-2-3 650℃退火------------------------------------------------------- 64
4-3 退火後顯微組織之觀察-------------------------------------------- 74
4-4 退火後之硬度量測-------------------------------------------------- 87
4-5 冷輥延與退火後形狀記憶效應之量測-------------------------- 87
4-6 晶粒成長之活化能計算-------------------------------------------- 95
第五章 Ti50Ni49Cr1.0之熱機處理結果與討論-------------------------- 99
5-1 固溶強化與時效之DSC量測結果-------------------------------- 99
5-1-1 顯微組織與成份分析量測結果----------------------------- 103
5-1-2 硬度與形狀記憶效應之量測結果-------------------------- 106
5-2 熱循環對Ti50Ni49Cr1.0之影響.------------------------------------ 109
5-3 Ti50Ni49Cr1.0之強化效應對合金變態溫度影響---------------- 114
第六章 結論------------------------------------------------------------------ 116
參考文獻------------------------------------------------------------------------ 118
1. D.P.Dautovich and G.R Purdy,Can.Metal.Quart.4(1965)129.
2. F.E.Wang,B.F.Desavage and W.I Buehler,J.Appl.Phys.,39(1968)2166
3. G.D.Sandrock ,A.J.Perkins and R.F.Hehemann,Met.Trans.,2(1971)2769.
4. 楊正修 逢甲大學材料科學研究所 碩士論文 (2002)
5. Gorokhovsky Vladimir ,Heckerman Brad B.,Wear resistant vapor
deposited coating, method of coating deposition and applications
therefor,2007,# 20070284255
6. L.C.Chang and T.A.Read;Trans.AIME.189(1951)47.
7. C.M.Wayman,J.Metal.32(1980)129.
8. K.Otsuka and K. Shimizu,Int.met.Rev.,31(1986)93.
9. L.Mc.D.Sckrtky,Scientific American,241(1979)74.
10. W.J.Buehler,J.W.Gilfrich and R.C.Wiley,J.Apply.Phys.,34(1963)
11. 轟 恆彥, 機械の研究, 第四十卷, 第一號, 1988, 195
12. L.Delaet ,R.V.krishnan, H.Tas and H.Warlimont,J. Mater.
Sci.,9(1974)1521.
13. A.P.Jardline,K.H.G.Ashbee and M.J.Bassett,J.Mater.Sci.,23(1988) 4273
14. T.Tadk,K.Otsuka and K.Shimizu,Ann.Rev.Mater.Sci,18(1988)25.
15. H.Warlimont and L.Delaey,Prog. Mater.Sci.18(1974)619.
16. L.Kaufman and M.Cohen, Prog. Met. Phys., 7(Pergamon Press,Oxford, (1957)169.
17. J.W.Christian,“The Theory of Transformations in Metals and Alloy ”,
Pergamon Press,Oxford,1965,p.816
18. C.M.Wayman,Trans.JIM(Supplement),17(1976)159.
19. D.P.Dunne and C.M.Wayman,Met.Trans.,4(1973)147.
20. G.B.Olson and Cohen,Script Met.,9(1975)1274.
21. T.Saburi,S.Nenno and C.M.Wayman,ICOMAT-79(1979)619.
22. T.Saburi,S.Nenno,in:Proc.Int.Conf.On Solid to Solid Phase Transformation,
Asm, Metals Park, Ohio,(1982)1455.
23. T.Tadaki,K.Otsuka and K.Shimizu,Ann.Rev.Mater.Sci.,18(1988)25.
24. T. A. Schroder and C. M. Wayman , Scripta Met.,11(1977)225

25. L. Delaey and J. Thienel ; in: Shape Memory Effect in Alloy
,(J.Perkins,ed),Plenum Press,New York,1975,p341
26. M. Nishida and T.Honma,ICOMAT-82, 43(1982)C4-225
27. M. Nishida and T.Honma,Scripta Met., 18(1984)138,1293,1299
28. T. Honma ;Proc.Guilin Symp. Of Shape Memory Alloys, SMA 86 Guilin,China(1986),83
29. T.Honma;ICOMAT-86 (1986),709
30. C.M.Wayman and K.Shimizu;Met.Sci.J.6(1972),175
31. 盧錫全, 國立台灣大學材料科學與工程研究所 碩士論文, (1992)
32. K.Otsuka and K.Shimizu, Metals Forum,4(1981)142.
33. K.Otsuka and C.M.Wayman,in:Reviews on the Deformation Behavior of
Materials,(P.Feltham ed.),Israel,1977,P.81.
34. K.Otsuka,in:Proc.Int.Conf.On Solid to Solid Phase Transfor-mations
,TMS-AIME Pittsburgh,Pa(USA),1981,P.1267.
35. K. Otsuke, C. M. Wayman, K. Nakai, H. Sakamoto and K. Shimizu,
Acta Met.,24(1976)207.
36. J. W. Christian, Met. Trans.,13 (1982) 509.
37. S. K. Wu and C. M. Wayman ,Acta Met.,37(1989) 2805
38. TB Massalki, H. Okamoto, PR. Subramanian, L. Kacprzak. Editor.
Binary alloy phase diagrams, 2nd ed., vol. 3.Ohio: ASM Interantional
,1990,2875
39. K.Otsuka,S.Sawamura and K.Shimizu,Phys.Stat.Sol.,5(1971)457.
40. O.Matsumoto,S.Miyaaki,K.Ostuka and H.Tamura,Acta Mater.,35
(1987)2137.
41. K.M.Knowls and K.A.Smith,Acta Mater.,29(1981)101.
42. T.Tadaki and C.M.Wayman,Metallography,15(1982)233.
43. T.Tadaki and C.M.Wayman,Metallography,15(1982)247
44. T.H.Nam,T.Saburi,Y.Kawamura and K.Shimizu,Mat.Trans.JIM,31(1990)
262.
45. T.H.Nam,T.Saburi,and K.Shimizu, Mat. Trans.JIM,31(1990)959
46. T.H.Nam,T.Saburi,Y.Nakata and K.Shimizu,Mat. Trans.JIM,31(1990)
1050.
47. T.H.Nam,T.Saburi,and K.Shimizu, Mat. Trans.JIM 33(1991)231.
48. 蘇培珍, 國立台灣大學材料科學與工程研究所 碩士論文 (2003)
49. 張洸豪, 國立台灣大學材料科學與工程研究所 碩士論文 (2004)
50. D. P. Dautovich, G. R. Purdy, Can. Mateall. ,6,1972,115
51. D. Bradley, J. Acoust, Soc. Am. ,37,1965,700
52. C. M. Wayman, I.Cornelis, Scripta, Metall.,6,1972,115
53. H. C. ling, R. Kaplow, Met. Trans.11,1980,A77
54. D. P. Dautovich and G. R. Purdy, Can. Metal.Quart, 4 (1965) 129.
55. F. E. Wang, B. F. Desavage and W. I. Buehler, J. Appl. Phys.,39 (1968)
2166
56. G. D. Sandrock, A. J. Perkin and R. F. Hechemann, Met.Trans.,2 (1971)
2769.
57. O. Mercier and K. N. Melten, Acta Met.,27(1979) 1467
58. H. C. Ling and R. Kaplow, Met.Trans.,12A (1981) 2101
59. E. Goo and R. Siinclair, Acta Met. ,33 (1985) 1717.
60. C. M. Hwang , M. Meichle, M. B. Salamon and C. M. Wayman, Phys.Mag.,A,47(1983)31.
61. K. H. Eckelmeyer, Scripta Mater.,10(1976) 677.
62. J. E. Hanlon, S. R. Butler and R. J. Wasilewski, Trans. Metall. Soc. AIME
,239(1967)1323.
63. T. Saburi, T. Tastsumi and S. Nenno, J. de Phyique (Supp.) 43 (1982)
C4-261
64. T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM.,28 (1987) 883.
65. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275.
66. M. Nishida and C. M. Wayman, Metallography, 21 (1988) 275.
67. G. Airoldi, G.Bellni and C. D. Franceso, J.Phys. F,14 (1984) 1983.
68. H. S. Lin, S. K. Wu, T. S. Chou and H. P. Kuo. Acta Metall. Mater.,
39(1991) 2069.
69. H.C.Lin,S.K.Wu and J.C.Lin,Material Chem.Phys.,37(1994)184.
70. 林新智, 國立台灣大學材料科學與工程研究所 博士論文 (1991)
71. A.Arab and M.Ahlers;ICOMAT-82(1982)709.
72. J.Janssen,J.Van Humbeeck,M.Chandrasekaran,N.Mwamba and L.Delaey,
ICOMAT-82(1982)639
73. Raychem Corporation,French Patent No.2301604.
74. W.M.Stobbs;J.Microscopy,129(1983)307.
75. J.M.Cook,M.A.Okeefe,D.J.Smith and W.M.Stobbs;J.Microscopy,129 (1983) 295.
76. T.Saburi,S. Nenno,Proc. Intern. Conf. On Solid-Solid Phase
Transformations,Pittsburgh,1981 1455.

77. T.Saburi,M.Yoshida,S. Nenno,Scr.Merall.,18,1984,363
78. S. Miyazaki, S. Kimura, K.Otsuka,Y.Suzuki,Scr.Metall.,19,1984,833
79. De Lange,R.G,Zijderveld,J.A.,Appl. Phys.39(1968)2195-2200.
80. L.A.Monasevich,Yu I. Paskal, V.E.Prib,.G.D.T Timonin, D.B.Chernov
,Metalloved. Term. Obrab. Met. 9(1979)62.
81. 佐分利敏雄,捻也宗次,西本泰憲,錢谷 誠;鐵和鋼,(1986)第6號
,pp37~44.
82. 本橋嘉信,星屋泰二,岡本芳三,大森宮次郎;日本金屬協會誌,第55卷,
第2號(1991)pp132~140.
83. John S.Madsen and A.Peter Jardine;Scripta Metallurgical et Materialia,
Vol.30,No.9,pp1189~1194(1994).
84. J.Busch,A.D.Johnson,C.H.Lee and D.A.Stevenson; J.Appl.Phys.,68,
p6224(1990).
85. W.J.Moberly,J.D.Busch,A.D.Busch,A.D.Johnson and M.H.Berkson ;
MRS Symp. Proc.,230:85~90(1991)
86. F.E.Wang, B.F.Desavage and W.I.Buehler;J.Appl.Phys. 39(1968) 2166
87. C.M.Wayman,I.Corelis and K.Shimizu; Scripta Met. 6(1972)115.
88. G.Airoldi,B.Rivolta and C.Turco;ICOMAT-86(1986)691.
89. S.Miyazaki, Y.Igo and K.Otsuka;Acta Met. 34(1986),2405.
90. T.Tadak,Y.Nakata and K.Shimizu; Trans,JIM.28(1987),883.
91. S.F.Hsieh, S.K.Wu, Journal of Materials Science 34 (1999) 1659-1665.
92. H.C.Lin, S.K.Wu and J.C.Lin, Materials Chemistry and Physics 37
(1994)184.
93. 謝世峰, 國立台灣大學材料科學與工程研究所 博士論文 (1992)
94. 黃智豪,“TiNiCr三元系形狀記憶合金之研究”國立高雄應用科技大學
模具工程所 碩士論文(2006)
95. Melton, Scripta Metallurgica vol32 pp.167-171
96. R. E. Reed-Hill, R. Abbaschian,“Physical Metallurgy Principles” Third Edition ,(1994)
97. J. I. Kim, Yinong Liu, S. Miyazaki, Acta Materialia 52(2004)P.487~499
98. 林凱南, 國立台灣大學材料科學與工程研究所 碩士論文 (2005)
99. S. H. Chang, S. K. Wu, G. H. Chang, Scripta Materialia, Vol52 (2005)
1341-1346
100.林國璋, 逢甲大學機械工程學系碩士班碩士論文 (2002)
101. Robert E. Reed-Hill; in”Physical Metallurgy Principles”,D. Van
Nostrand Company, INC. ;(1966),P.179~207.
102. Recrystallization and Related Annealing Phenomena, F.J.Humphreys
and M.Hatherly, Pergamon, P.281~325
103. Fedotov S. G., Bashanova N. N., Zhebyneva N. F., Russian Metallurgy,
(1983)85.
104. S. K. Wu, H. C. Lin and T. S. Chou, Acta Met., 38(1990)95.
105. M. Cohen, E.S. Machhlin, V.G. Paranjpe, Thermodynamics in Physical
Metallurgy., in:American Society for Metals,Metals Park,OH,1950
,P.242.
106. E. Hornbogen, Acta Metall. 33(1985) 595.
107. S. Eucken, E. Hornbogen, J. Mater. Sci. 19 (1984) 1343.
108. S.F. Hsieh, S.K. Wu, H.C. Lin, C.H. Yang, Journal of Alloys and
Compounds, 387 (2005) 121-127
109. M. Choen, E. S. Machlin and V. G. Paranjpe,”Thermodyamics in
Physical Metallurgy”, ASM, Metals Park, Ohio. (1950)242
110. K. Adachi and J. Perkins; Met. Trans., 29(1984)393.
111.International ASTM Designation:E 112-96 (Reapproved 2004), Standard
Test Methods for Determining Average Grain Size.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔