# 臺灣博碩士論文加值系統

(3.235.120.150) 您好！臺灣時間：2021/07/31 15:11

:::

### 詳目顯示

:

• 被引用:21
• 點閱:1210
• 評分:
• 下載:237
• 書目收藏:2
 本研究利用數值模擬與田口方法設計微齒輪之鍛造預形，並製作模具以進行實驗驗證。鍛造預形設計以胚料與模具之幾何特徵為設計變數，包括胚料體積、胚料直徑、預形模具之圓角等，藉由數值模擬並搭配田口方法，以兩個階段之常溫微鍛造成形為製程，針對模數為0.15、具有28與14齒、厚度各為0.5 mm之雙層齒輪，且兩端各有2 mm直徑轉軸之微齒輪元件，以可完全充填齒輪模穴與最小鍛造能量為目標，設計一組微鍛造預形模具。微齒輪材料為純銅C1100，而模擬所需之應力應變曲線則經由壓縮試驗獲得。研究結果顯示，數值模擬與田口方法能幫助微齒輪的鍛造預形設計，而微齒輪元件中之大齒輪可經微鍛造成功地成形，但其小齒輪則無法完全成形，材料充填模穴之模擬預測與實驗接近。微鍛造是具有潛力的金屬微齒輪成形技術。
 The study uses a numerical simulation technique and the Taguchi method to design preforms for the micro forging of a gear. The predicted profiles of the dies were then used to construct a set of dies for the experiments. In this study, the geometric features of the billet and the die are main design variables for the preform of the micro forged gear. The variables include the volume and diameter of the billet, and the radii of the preform dies. By a two-stage micro forging process consist of the perform stage and the finished stage, a micro gear component having two gears of 28 and 14 teeth with the module of 0.15 and the thickness of 0.5 mm is micro-forged at the room temperature. The gear component also has two shafts with the diameter of 2 mm on both ends. The design target of the preform is to fulfill the complete filling of the die cavities in the finish stage of the micro forging and to minimize the energy required in entire micro forging process. The gear material is copper (C1100) and the required stress-strain curves are obtained from simple up-setting experiments. The designed preforms were then used to fabricate the dies for the experiments of the micro forging of gears. The results show that the predicted metal flows during the micro forging process are similar to those in experiments. The numerical simulation and the Taguchi method can help the design of the preforms for the micro forging gear. The 28-teeth gear can be produced by a two-stage micro forging process, but further study on the complete die filling of 14-teeth gear is still needed. The micro forging process is a potential technique for the manufacturing of metallic micro gears.
 目錄摘 要 iABSTRACT ii表目錄 vi圖目錄 vii一、緒論 11-1 前言 11-2文獻回顧 21-3 研究動機與目的 8二、鍛造基本理論 102-1 鍛造概論 102-2鍛造之製程設計 112-3鍛件之成形設計 132-4鍛件之預形設計 15三、田口式實驗法 203-1田口品質工程理論 203-1-1 品質損失函數 203-1-2 參數設計 213-1-3 直交表設計 213-1-4 信號雜音比之特性 223-1-5 變異數分析(Analysis of Variance ) 233-2 微鍛造成形參數設定 243-2-1 確認品質特性 243-2-2 決定控制因子 253-2-3 直交表實驗設計 25四、DEFORM模擬與材料實驗 304-1有限元素法基本理論 304-2 DEFORM軟體簡介 314-3材料機械性質 334-3-1 材料 344-3-2 實驗設備 344-3-3圓柱壓縮試驗 354-4微齒輪設計 384-5 DEFORM模擬 41五、實驗設備與方法 435-1 模具設計與製作 435-2 實驗步驟 445-3 實驗參數 48六、結果與討論 496-1直交表實驗結果分析 496-2 模擬結果分析 516-3 實驗驗證 57七、結論與未來展望 777-1結論 777-2 未來展望 78參考文獻 79附錄：微齒輪鍛造模具圖 82簡歷 91
 參考文獻[1] 詹福賜、張恭翰，塑性加工之有限單元解析理論與實務，全華科技圖書股份有限公司，台北，民90年。[2] Toshiyuki, H., Y. Furuuchi and R. Nakamula, ”Micro-gear fabrication using optical projection lithography on copper-clad plastic substrates and electroplating of nickel”, Microelectronic Engineering, Japan, vol. 83, pp. 1316-1320, 2006.[3] Gietzelt, T., O. Jacobi and V. Piotter, “Development of a micro annular gear pump by micro powder injection molding”, Journal of Materials Processing Technology, Germany, vol.39, pp.2113-2119, 2004.[4] Zhao, J. and H. Mates, “Effects of process parameters on the micro molding process”, Polymer engineering and science, Singapore, vol.43, pp.1542-1554, 2003.[5] Kim, W. J. and Y. K. Sa, “Mocro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears”, Scripta materialia , Korea, vol.54, pp.1391-1395, 2006.[6] Yeh, M. S., H. Y. Lin and H. T. Lin, “Superplastic micro-forming with a fine grained Zn-22Al eutectoid alloy using hot embossing technology”, Journal of Materials Processing Technology, Taiwan, vol. 180, pp. 17-22, 2006.[7] Douglas, R., D. Kuhlmann, “Guidelines for precision hot forging with applications”, Journal of Materials Processing Technology, USA, vol. 98, pp. 182-188.[8] 陳怡安、吳春甫、蔡行知，行動電話電池微型端子開發，鍛造，第十四卷第二期，第52-57頁，94年7月。[9] http://www.itis.org.tw/.[10] Geiger, M. and M. Kleiner , “Microforming”, Anneals of the CIRP, 2001.[11] Saotome, Y., K. Yasuda and H. Kaga, “Microdeep drawability of very thin sheet steels, Journal of Materials Processing Technology“, vol. 113, pp.641-647, June, 2001.[12] Buschhausen, A., K. Weinmann and J. Y. Lee, “Evaluation of lubrication and friction in cold forging using a double backward-extrusion processing”, Journal of materials processing technology, vol. 33, pp.34-38, 1992.[13] 曾俊發、陳富國，尺寸效應於精微成形之基礎研究 ，碩士論文，92年7月。[14] Vollertsen, F., Z. Hu and H. S. Niehoff, 2004, “State of the art in micro forming and investigations into micro deep drawing”, Journal of Materials Processing Technology, Vol. 151, pp.70-79, September.[15] Shim, K. H., S. K. Lee and B. S. Kang, “Investigation on blanking of thin sheet metalusing the ductile fracture criterion and its experimental verification”, Journal of Materials Processing Technology, Korea, vol. 155-156, pp. 1935-1942, 2004.[16] 林志浩、蔡行知，長徑比8：1雙階差黃銅管件深引伸模具開發應用，鍛造，第十四卷第二期，第46-51頁，94年7月。[17] Dean, T. A., “The net-shape forming of gears”, Materials and Design, UK, vol. 21, pp. 271-278, 2000.[18] Lee, Y. K., S. R. Lee and C. H. Lee, “Process modification of bevel gear forging using three-dimensional finite element analysis”, Journal of Materials Processing Technology, Korea, vol. 113, pp.59-63, 2001.[19] Cai, J., T. A. Deana and Z. M. Hub, “Alternative die designs in net-shape forging of gears”, Journal of Materials Processing Technology, UK, vol. 150, pp.48-55, 2004.[20] Kang, G. J., W. J. Song and J. Kim, “Numerical approach to forging process of a gear with inner cam profile using FEM”, Journal of Materials Processing Technology, Korea, vol. 164-165, pp. 1212-1217, 2005 .[21] Bochniak, W., A. Korbel and R. Szyndler, “New forging method of bevel gears from structural steel”, Journal of Materials Processing Technology, Poland, vol. 167, pp.488-493, 2006.[22] Ma, Y., Y. Qin and R. Balendra, “Forming of hollow gear-shafts with pressure-assisted injection forging（PAIF）, Journal of Materials Processing Technology, vol. 167, pp. 294-301, 2005.[23] Tamostu, N. and K. Osakada, “Research and development on precision forging technology in Japan”, Journal of the Chinese society of mechanical engineers, vol. 26, pp.339-346, 2005.[24] 楊東昇，正齒輪鍛造之有限元素分析，中國機械工程學刊，第二十六卷第五期，第553-557頁，94年。[25] Yasunori, S. and A. Inoue, ”Superplastic micro-forming of microstructures”, IEEE, 1994.[26] Yasunori, S. and A. Inoue, ”New amorphous alloys as micromaterials and the processing technologies”, IEEE, 2000.[27] 巫益賢，微小齒輪的精微衝壓連續模具設計與製作之研究，碩士論文，95年7月。[28] 李榮顯，塑性加工學，台北，三民書局，75年，pp.6-136。[29] 許源泉，鍛造學理論與實習，台北，三民書局， 79年，pp.138-153。[30] 賴耿陽編著，冷間鍛造基礎與應用，復漢書局，88年。[31] Qin, Y. and R. Balendra, “An approach for the forming of large-thickness-flange components by injection forging”, Journal of materials processing technology, UK, vol.145, pp.153-162, 2004.[32] Zhao, G., E. Wright and R. V. Grandhi, “Computer Aided Preform Design in Forging Using the Inverse Die Contact Tracking Method”, International Journal of Machine Tools and Manufacture, vol. 36 No.7, pp.755-769 ,1995.[33] Kim, D. J. and B. M. Kim, “Application of Neural Network and FEM for Metal Forming Processes” International Journal of Machine Tools and Manufacture, vol. 40, pp.911-925, 2000.[34] Ko, D. C. and D. H. Kim, ”Application of artificial neural network and Taguchi method to perform design in metal forming considering workability”, International journal of machine tools & manufacture, Korea, vol.39,pp.771-785, 1999.[35] Kim, Y. J. and R. Naunit, “Determination of perform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process”, International journal of mechanical sciences, UK, vol.43, pp.853-870, 2001.[36] Choia, J. and H. Y. Cho, “An upper-bound analysis for the forming of spur gears”, Journal of materials processing technology, Korea, vol.104, pp.67-73, 2000.[37] Park, J. J. and H. S. Hwang, “Preform design for precision forging of an asymmetric rib-web type component”, Journal of materials processing technology, Korea, vol.187-188, pp.595-599, 2007.[38] 王栢村，電腦輔助工程分析之實務與應用，全華科技圖書股份有限公司，台北，民90年。[39] 黎中正、陳源樹，實驗設計與分析，高立圖書公司，民92年。[40] 李輝煌，田口方法—品質設計的原理與實務，高立圖書公司，2000。[41] 航發訓練中心，85年度經濟部科技專案業界培訓計劃，航太鍛件驗證系統技術研討會教材，1996。[42] DEFORM System User Manual , Scientific Forming Technologies Corporation, April. 1, 1994.[43] 賴耿陽編著，齒輪計算手冊，復文書局，1983年8月。[44] 林明宏，微衝剪之成形模擬與剪斷面品質之研究，碩士論文，96年7月。
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 微齒輪冷鍛成形之預形設計與實驗 2 溫度與晶粒細化對微齒輪鍛造之影響 3 微小齒輪的精微沖壓連續模具設計與製作之研究 4 等徑轉角擠製純銅於逆向擠製微型圓杯之研究 5 法蘭套管成形之研究 6 晶粒尺寸對黃銅探針冷擠製之影響 7 合金鋼梅花孔螺絲冷鍛之預形設計 8 汽車電瓶接頭螺絲多道次冷間鍛造成形 9 逆向擠製沖頭幾何對微型端子肩部充填之影響 10 有縫不鏽鋼管縮管加工參數最佳化─以SUS441鋼管為例 11 單向啟動齒輪冷鍛成形製程之研究 12 自攻螺絲之最佳化設計-以翼形鑽尾螺絲M4.65x1.59mm為例 13 鍛造預成形幾何參數最佳化之有限元素分析 14 冷鍛成形微齒輪分析與驗證 15 預形設計對馬口鐵平板捲邊成形之影響

 1 26. 張火燦、劉淑寧，2002，「從社會網路理論探討員工知識分享」，人力資源管理學報，2(3)，101-113。 2 40. 劉宜君，2003，「政策知識管理與社會網絡--政府部門政策知識網絡之初探」，國家政策論壇季刊。 3 43. 蔡宏明，2001，「知識經濟時代對產業人力資源的挑戰與因應策略」，經濟情勢暨評論。 4 46. 鍾瑞國、羅潔伶，2001，「從社會資本觀點論組織知識移轉」，明道學術論壇，第一卷，第一期，頁1-14。 5 [8] 陳怡安、吳春甫、蔡行知，行動電話電池微型端子開發，鍛造，第十四卷第二期，第52-57頁，94年7月。 6 [16] 林志浩、蔡行知，長徑比8：1雙階差黃銅管件深引伸模具開發應用，鍛造，第十四卷第二期，第46-51頁，94年7月。

 1 斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究 2 渦輪葉片鍛造之模具最佳化設計 3 鎂合金鍛造成形性之研究 4 鋁合金自行車龍頭豎管之多軸鍛造模具與製程設計 5 熱鍛模具磨損分析與鍛造參數設計最佳化研究 6 微齒輪冷鍛成形之預形設計與實驗 7 鍛造預成形幾何參數最佳化之有限元素分析 8 A6061鋁合金與AZ61鎂合金凸緣鍛造成形之研究 9 鍛造模具預應力最佳化設計之研究 10 六角螺栓近淨形鍛造成形有限元模擬分析 11 溫度與晶粒細化對微齒輪鍛造之影響 12 雙圓弧螺旋傘齒輪之鍛造製程模擬研究 13 自由浮動模具鍛造成形材料流動之研究 14 微小齒輪的精微沖壓連續模具設計與製作之研究 15 微引伸成形加工條件對引伸比之影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室